Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAndroid in the Zoo: Chain-of-Action-Thought for GUI Agents
Large language model (LLM) leads to a surge of autonomous GUI agents for smartphone, which completes a task triggered by natural language through predicting a sequence of actions of API. Even though the task highly relies on past actions and visual observations, existing studies typical consider little semantic information carried out by intermediate screenshots and screen operations. To address this, this work presents Chain-of-Action-Thought (dubbed CoAT), which takes the description of the previous actions, the current screen, and more importantly the action thinking of what actions should be performed and the outcomes led by the chosen action. We demonstrate that, in a zero-shot setting upon an off-the-shell LLM, CoAT significantly improves the goal progress compared to standard context modeling. To further facilitate the research in this line, we construct a benchmark Android-In-The-Zoo (AitZ), which contains 18,643 screen-action pairs together with chain-of-action-thought annotations. Experiments show that fine-tuning a 200M model on our AitZ dataset achieves on par performance with CogAgent-Chat-18B.
Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats
As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.
Robot Learning with Sensorimotor Pre-training
We present a self-supervised sensorimotor pre-training approach for robotics. Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens. Given a sequence of camera images, proprioceptive robot states, and past actions, we encode the interleaved sequence into tokens, mask out a random subset, and train a model to predict the masked-out content. We hypothesize that if the robot can predict the missing content it has acquired a good model of the physical world that can enable it to act. RPT is designed to operate on latent visual representations which makes prediction tractable, enables scaling to 10x larger models, and 10 Hz inference on a real robot. To evaluate our approach, we collect a dataset of 20,000 real-world trajectories over 9 months using a combination of motion planning and model-based grasping algorithms. We find that pre-training on this data consistently outperforms training from scratch, leads to 2x improvements in the block stacking task, and has favorable scaling properties.
ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL
A broad use case of large language models (LLMs) is in goal-directed decision-making tasks (or "agent" tasks), where an LLM needs to not just generate completions for a given prompt, but rather make intelligent decisions over a multi-turn interaction to accomplish a task (e.g., when interacting with the web, using tools, or providing customer support). Reinforcement learning (RL) provides a general paradigm to address such agent tasks, but current RL methods for LLMs largely focus on optimizing single-turn rewards. By construction, most single-turn RL methods cannot endow LLMs with the ability to intelligently seek information over multiple turns, perform credit assignment, or reason about their past actions -- all of which are critical in agent tasks. This raises the question: how can we design effective and efficient multi-turn RL algorithms for LLMs? In this paper, we develop a framework for building multi-turn RL algorithms for fine-tuning LLMs, that preserves the flexibility of existing single-turn RL methods for LLMs (e.g., proximal policy optimization), while accommodating multiple turns, long horizons, and delayed rewards effectively. To do this, our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel: a high-level off-policy value-based RL algorithm to aggregate reward over utterances, and a low-level RL algorithm that utilizes this high-level value function to train a token policy within each utterance or turn. Our hierarchical framework, Actor-Critic Framework with a Hierarchical Structure (ArCHer), can also give rise to other RL methods. Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks, attaining a sample efficiency of about 100x over existing methods, while also improving with larger model capacity (upto the 7 billion scale that we tested on).
The Wasserstein Believer: Learning Belief Updates for Partially Observable Environments through Reliable Latent Space Models
Partially Observable Markov Decision Processes (POMDPs) are used to model environments where the full state cannot be perceived by an agent. As such the agent needs to reason taking into account the past observations and actions. However, simply remembering the full history is generally intractable due to the exponential growth in the history space. Maintaining a probability distribution that models the belief over what the true state is can be used as a sufficient statistic of the history, but its computation requires access to the model of the environment and is often intractable. While SOTA algorithms use Recurrent Neural Networks to compress the observation-action history aiming to learn a sufficient statistic, they lack guarantees of success and can lead to sub-optimal policies. To overcome this, we propose the Wasserstein Belief Updater, an RL algorithm that learns a latent model of the POMDP and an approximation of the belief update. Our approach comes with theoretical guarantees on the quality of our approximation ensuring that our outputted beliefs allow for learning the optimal value function.
Vision-and-Language Navigation Generative Pretrained Transformer
In the Vision-and-Language Navigation (VLN) field, agents are tasked with navigating real-world scenes guided by linguistic instructions. Enabling the agent to adhere to instructions throughout the process of navigation represents a significant challenge within the domain of VLN. To address this challenge, common approaches often rely on encoders to explicitly record past locations and actions, increasing model complexity and resource consumption. Our proposal, the Vision-and-Language Navigation Generative Pretrained Transformer (VLN-GPT), adopts a transformer decoder model (GPT2) to model trajectory sequence dependencies, bypassing the need for historical encoding modules. This method allows for direct historical information access through trajectory sequence, enhancing efficiency. Furthermore, our model separates the training process into offline pre-training with imitation learning and online fine-tuning with reinforcement learning. This distinction allows for more focused training objectives and improved performance. Performance assessments on the VLN dataset reveal that VLN-GPT surpasses complex state-of-the-art encoder-based models.
Diffusion Models Are Real-Time Game Engines
We present GameNGen, the first game engine powered entirely by a neural model that enables real-time interaction with a complex environment over long trajectories at high quality. GameNGen can interactively simulate the classic game DOOM at over 20 frames per second on a single TPU. Next frame prediction achieves a PSNR of 29.4, comparable to lossy JPEG compression. Human raters are only slightly better than random chance at distinguishing short clips of the game from clips of the simulation. GameNGen is trained in two phases: (1) an RL-agent learns to play the game and the training sessions are recorded, and (2) a diffusion model is trained to produce the next frame, conditioned on the sequence of past frames and actions. Conditioning augmentations enable stable auto-regressive generation over long trajectories.
Predicting In-game Actions from Interviews of NBA Players
Sports competitions are widely researched in computer and social science, with the goal of understanding how players act under uncertainty. While there is an abundance of computational work on player metrics prediction based on past performance, very few attempts to incorporate out-of-game signals have been made. Specifically, it was previously unclear whether linguistic signals gathered from players' interviews can add information which does not appear in performance metrics. To bridge that gap, we define text classification tasks of predicting deviations from mean in NBA players' in-game actions, which are associated with strategic choices, player behavior and risk, using their choice of language prior to the game. We collected a dataset of transcripts from key NBA players' pre-game interviews and their in-game performance metrics, totalling in 5,226 interview-metric pairs. We design neural models for players' action prediction based on increasingly more complex aspects of the language signals in their open-ended interviews. Our models can make their predictions based on the textual signal alone, or on a combination with signals from past-performance metrics. Our text-based models outperform strong baselines trained on performance metrics only, demonstrating the importance of language usage for action prediction. Moreover, the models that employ both textual input and past-performance metrics produced the best results. Finally, as neural networks are notoriously difficult to interpret, we propose a method for gaining further insight into what our models have learned. Particularly, we present an LDA-based analysis, where we interpret model predictions in terms of correlated topics. We find that our best performing textual model is most associated with topics that are intuitively related to each prediction task and that better models yield higher correlation with more informative topics.
BOLAA: Benchmarking and Orchestrating LLM-augmented Autonomous Agents
The massive successes of large language models (LLMs) encourage the emerging exploration of LLM-augmented Autonomous Agents (LAAs). An LAA is able to generate actions with its core LLM and interact with environments, which facilitates the ability to resolve complex tasks by conditioning on past interactions such as observations and actions. Since the investigation of LAA is still very recent, limited explorations are available. Therefore, we provide a comprehensive comparison of LAA in terms of both agent architectures and LLM backbones. Additionally, we propose a new strategy to orchestrate multiple LAAs such that each labor LAA focuses on one type of action, i.e. BOLAA, where a controller manages the communication among multiple agents. We conduct simulations on both decision-making and multi-step reasoning environments, which comprehensively justify the capacity of LAAs. Our performance results provide quantitative suggestions for designing LAA architectures and the optimal choice of LLMs, as well as the compatibility of both. We release our implementation code of LAAs to the public at https://github.com/salesforce/BOLAA.
AdaFuse: Adaptive Temporal Fusion Network for Efficient Action Recognition
Temporal modelling is the key for efficient video action recognition. While understanding temporal information can improve recognition accuracy for dynamic actions, removing temporal redundancy and reusing past features can significantly save computation leading to efficient action recognition. In this paper, we introduce an adaptive temporal fusion network, called AdaFuse, that dynamically fuses channels from current and past feature maps for strong temporal modelling. Specifically, the necessary information from the historical convolution feature maps is fused with current pruned feature maps with the goal of improving both recognition accuracy and efficiency. In addition, we use a skipping operation to further reduce the computation cost of action recognition. Extensive experiments on Something V1 & V2, Jester and Mini-Kinetics show that our approach can achieve about 40% computation savings with comparable accuracy to state-of-the-art methods. The project page can be found at https://mengyuest.github.io/AdaFuse/
Learning to Model the World with Language
To interact with humans in the world, agents need to understand the diverse types of language that people use, relate them to the visual world, and act based on them. While current agents learn to execute simple language instructions from task rewards, we aim to build agents that leverage diverse language that conveys general knowledge, describes the state of the world, provides interactive feedback, and more. Our key idea is that language helps agents predict the future: what will be observed, how the world will behave, and which situations will be rewarded. This perspective unifies language understanding with future prediction as a powerful self-supervised learning objective. We present Dynalang, an agent that learns a multimodal world model that predicts future text and image representations and learns to act from imagined model rollouts. Unlike traditional agents that use language only to predict actions, Dynalang acquires rich language understanding by using past language also to predict future language, video, and rewards. In addition to learning from online interaction in an environment, Dynalang can be pretrained on datasets of text, video, or both without actions or rewards. From using language hints in grid worlds to navigating photorealistic scans of homes, Dynalang utilizes diverse types of language to improve task performance, including environment descriptions, game rules, and instructions.
Decision Transformer: Reinforcement Learning via Sequence Modeling
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.
MuMA-ToM: Multi-modal Multi-Agent Theory of Mind
Understanding people's social interactions in complex real-world scenarios often relies on intricate mental reasoning. To truly understand how and why people interact with one another, we must infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal -- we can watch people's actions, hear their conversations, and/or read about their past behaviors. For AI systems to successfully and safely interact with people in real-world environments, they also need to understand people's mental states as well as their inferences about each other's mental states based on multi-modal information about their interactions. For this, we introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In MuMA-ToM, we provide video and text descriptions of people's multi-modal behavior in realistic household environments. Based on the context, we then ask questions about people's goals, beliefs, and beliefs about others' goals. We validated MuMA-ToM in a human experiment and provided a human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5 Pro) and a recent multi-modal ToM model, BIP-ALM.
Agent Workflow Memory
Despite the potential of language model-based agents to solve real-world tasks such as web navigation, current methods still struggle with long-horizon tasks with complex action trajectories. In contrast, humans can flexibly solve complex tasks by learning reusable task workflows from past experiences and using them to guide future actions. To build agents that can similarly benefit from this process, we introduce Agent Workflow Memory (AWM), a method for inducing commonly reused routines, i.e., workflows, and selectively providing workflows to the agent to guide subsequent generations. AWM flexibly applies to both offline and online scenarios, where agents induce workflows from training examples beforehand or from test queries on the fly. We experiment on two major web navigation benchmarks -- Mind2Web and WebArena -- that collectively cover 1000+ tasks from 200+ domains across travel, shopping, and social media, among others. AWM substantially improves the baseline results by 24.6% and 51.1% relative success rate on Mind2Web and WebArena while reducing the number of steps taken to solve WebArena tasks successfully. Furthermore, online AWM robustly generalizes in cross-task, website, and domain evaluations, surpassing baselines from 8.9 to 14.0 absolute points as train-test task distribution gaps widen.
Lightweight Neural App Control
This paper introduces a novel mobile phone control architecture, termed ``app agents", for efficient interactions and controls across various Android apps. The proposed Lightweight Multi-modal App Control (LiMAC) takes as input a textual goal and a sequence of past mobile observations, such as screenshots and corresponding UI trees, to generate precise actions. To address the computational constraints inherent to smartphones, within LiMAC, we introduce a small Action Transformer (AcT) integrated with a fine-tuned vision-language model (VLM) for real-time decision-making and task execution. We evaluate LiMAC on two open-source mobile control datasets, demonstrating the superior performance of our small-form-factor approach against fine-tuned versions of open-source VLMs, such as Florence2 and Qwen2-VL. It also significantly outperforms prompt engineering baselines utilising closed-source foundation models like GPT-4o. More specifically, LiMAC increases the overall action accuracy by up to 19% compared to fine-tuned VLMs, and up to 42% compared to prompt-engineering baselines.
Emergent Agentic Transformer from Chain of Hindsight Experience
Large transformer models powered by diverse data and model scale have dominated natural language modeling and computer vision and pushed the frontier of multiple AI areas. In reinforcement learning (RL), despite many efforts into transformer-based policies, a key limitation, however, is that current transformer-based policies cannot learn by directly combining information from multiple sub-optimal trials. In this work, we address this issue using recently proposed chain of hindsight to relabel experience, where we train a transformer on a sequence of trajectory experience ascending sorted according to their total rewards. Our method consists of relabelling target return of each trajectory to the maximum total reward among in sequence of trajectories and training an autoregressive model to predict actions conditioning on past states, actions, rewards, target returns, and task completion tokens, the resulting model, Agentic Transformer (AT), can learn to improve upon itself both at training and test time. As we show on D4RL and ExoRL benchmarks, to the best our knowledge, this is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches, even from sub-optimal data. Our Agentic Transformer also shows a promising scaling trend that bigger models consistently improve results.
Inferring Rewards from Language in Context
In classic instruction following, language like "I'd like the JetBlue flight" maps to actions (e.g., selecting that flight). However, language also conveys information about a user's underlying reward function (e.g., a general preference for JetBlue), which can allow a model to carry out desirable actions in new contexts. We present a model that infers rewards from language pragmatically: reasoning about how speakers choose utterances not only to elicit desired actions, but also to reveal information about their preferences. On a new interactive flight-booking task with natural language, our model more accurately infers rewards and predicts optimal actions in unseen environments, in comparison to past work that first maps language to actions (instruction following) and then maps actions to rewards (inverse reinforcement learning).
Navigation World Models
Navigation is a fundamental skill of agents with visual-motor capabilities. We introduce a Navigation World Model (NWM), a controllable video generation model that predicts future visual observations based on past observations and navigation actions. To capture complex environment dynamics, NWM employs a Conditional Diffusion Transformer (CDiT), trained on a diverse collection of egocentric videos of both human and robotic agents, and scaled up to 1 billion parameters. In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal. Unlike supervised navigation policies with fixed behavior, NWM can dynamically incorporate constraints during planning. Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy. Furthermore, NWM leverages its learned visual priors to imagine trajectories in unfamiliar environments from a single input image, making it a flexible and powerful tool for next-generation navigation systems.
Learning and Retrieval from Prior Data for Skill-based Imitation Learning
Imitation learning offers a promising path for robots to learn general-purpose behaviors, but traditionally has exhibited limited scalability due to high data supervision requirements and brittle generalization. Inspired by recent advances in multi-task imitation learning, we investigate the use of prior data from previous tasks to facilitate learning novel tasks in a robust, data-efficient manner. To make effective use of the prior data, the robot must internalize knowledge from past experiences and contextualize this knowledge in novel tasks. To that end, we develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data and subsequently learns a policy for the target task that invokes these learned skills. We identify several key design choices that significantly improve performance on novel tasks, namely representation learning objectives to enable more predictable skill representations and a retrieval-based data augmentation mechanism to increase the scope of supervision for policy training. On a collection of simulated and real-world manipulation domains, we demonstrate that our method significantly outperforms existing imitation learning and offline reinforcement learning approaches. Videos and code are available at https://ut-austin-rpl.github.io/sailor
Reason for Future, Act for Now: A Principled Framework for Autonomous LLM Agents with Provable Sample Efficiency
Large language models (LLMs) demonstrate impressive reasoning abilities, but translating reasoning into actions in the real world remains challenging. In particular, it remains unclear how to complete a given task provably within a minimum number of interactions with the external environment, e.g., through an internal mechanism of reasoning. To this end, we propose a principled framework with provable regret guarantees to orchestrate reasoning and acting, which we call "reason for future, act for now" (RAFA). Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon ("reason for future"). At each step, the LLM agent takes the initial action of the planned trajectory ("act for now"), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state. The key idea is to cast reasoning in LLMs as learning and planning in Bayesian adaptive Markov decision processes (MDPs). Correspondingly, we prompt LLMs to form an updated posterior of the unknown environment from the memory buffer (learning) and generate an optimal trajectory for multiple future steps that maximizes a value function (planning). The learning and planning subroutines are performed in an "in-context" manner to emulate the actor-critic update for MDPs. Our theoretical analysis proves that the novel combination of long-term reasoning and short-term acting achieves a T regret. In particular, the regret bound highlights an intriguing interplay between the prior knowledge obtained through pretraining and the uncertainty reduction achieved by reasoning and acting. Our empirical validation shows that it outperforms various existing frameworks and achieves nearly perfect scores on a few benchmarks.
Weighted Tallying Bandits: Overcoming Intractability via Repeated Exposure Optimality
In recommender system or crowdsourcing applications of online learning, a human's preferences or abilities are often a function of the algorithm's recent actions. Motivated by this, a significant line of work has formalized settings where an action's loss is a function of the number of times that action was recently played in the prior m timesteps, where m corresponds to a bound on human memory capacity. To more faithfully capture decay of human memory with time, we introduce the Weighted Tallying Bandit (WTB), which generalizes this setting by requiring that an action's loss is a function of a weighted summation of the number of times that arm was played in the last m timesteps. This WTB setting is intractable without further assumption. So we study it under Repeated Exposure Optimality (REO), a condition motivated by the literature on human physiology, which requires the existence of an action that when repetitively played will eventually yield smaller loss than any other sequence of actions. We study the minimization of the complete policy regret (CPR), which is the strongest notion of regret, in WTB under REO. Since m is typically unknown, we assume we only have access to an upper bound M on m. We show that for problems with K actions and horizon T, a simple modification of the successive elimination algorithm has O left( KT + (m+M)K right) CPR. Interestingly, upto an additive (in lieu of mutliplicative) factor in (m+M)K, this recovers the classical guarantee for the simpler stochastic multi-armed bandit with traditional regret. We additionally show that in our setting, any algorithm will suffer additive CPR of Omega left( mK + M right), demonstrating our result is nearly optimal. Our algorithm is computationally efficient, and we experimentally demonstrate its practicality and superiority over natural baselines.
Context-Aware Planning and Environment-Aware Memory for Instruction Following Embodied Agents
Accomplishing household tasks requires to plan step-by-step actions considering the consequences of previous actions. However, the state-of-the-art embodied agents often make mistakes in navigating the environment and interacting with proper objects due to imperfect learning by imitating experts or algorithmic planners without such knowledge. To improve both visual navigation and object interaction, we propose to consider the consequence of taken actions by CAPEAM (Context-Aware Planning and Environment-Aware Memory) that incorporates semantic context (e.g., appropriate objects to interact with) in a sequence of actions, and the changed spatial arrangement and states of interacted objects (e.g., location that the object has been moved to) in inferring the subsequent actions. We empirically show that the agent with the proposed CAPEAM achieves state-of-the-art performance in various metrics using a challenging interactive instruction following benchmark in both seen and unseen environments by large margins (up to +10.70% in unseen env.).
Latent Action Priors From a Single Gait Cycle Demonstration for Online Imitation Learning
Deep Reinforcement Learning (DRL) in simulation often results in brittle and unrealistic learning outcomes. To push the agent towards more desirable solutions, prior information can be injected in the learning process through, for instance, reward shaping, expert data, or motion primitives. We propose an additional inductive bias for robot learning: latent actions learned from expert demonstration as priors in the action space. We show that these action priors can be learned from only a single open-loop gait cycle using a simple autoencoder. Using these latent action priors combined with established style rewards for imitation in DRL achieves above expert demonstration level of performance and leads to more desirable gaits. Further, action priors substantially improve the performance on transfer tasks, even leading to gait transitions for higher target speeds. Videos and code are available at https://sites.google.com/view/latent-action-priors.
Hand-Object Interaction Pretraining from Videos
We present an approach to learn general robot manipulation priors from 3D hand-object interaction trajectories. We build a framework to use in-the-wild videos to generate sensorimotor robot trajectories. We do so by lifting both the human hand and the manipulated object in a shared 3D space and retargeting human motions to robot actions. Generative modeling on this data gives us a task-agnostic base policy. This policy captures a general yet flexible manipulation prior. We empirically demonstrate that finetuning this policy, with both reinforcement learning (RL) and behavior cloning (BC), enables sample-efficient adaptation to downstream tasks and simultaneously improves robustness and generalizability compared to prior approaches. Qualitative experiments are available at: https://hgaurav2k.github.io/hop/.
Accelerating Exploration with Unlabeled Prior Data
Learning to solve tasks from a sparse reward signal is a major challenge for standard reinforcement learning (RL) algorithms. However, in the real world, agents rarely need to solve sparse reward tasks entirely from scratch. More often, we might possess prior experience to draw on that provides considerable guidance about which actions and outcomes are possible in the world, which we can use to explore more effectively for new tasks. In this work, we study how prior data without reward labels may be used to guide and accelerate exploration for an agent solving a new sparse reward task. We propose a simple approach that learns a reward model from online experience, labels the unlabeled prior data with optimistic rewards, and then uses it concurrently alongside the online data for downstream policy and critic optimization. This general formula leads to rapid exploration in several challenging sparse-reward domains where tabula rasa exploration is insufficient, including the AntMaze domain, Adroit hand manipulation domain, and a visual simulated robotic manipulation domain. Our results highlight the ease of incorporating unlabeled prior data into existing online RL algorithms, and the (perhaps surprising) effectiveness of doing so.
Towards mental time travel: a hierarchical memory for reinforcement learning agents
Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Chunk Attention Memory (HCAM), which helps agents to remember the past in detail. HCAM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HCAM can therefore "mentally time-travel" -- remember past events in detail without attending to all intervening events. We show that agents with HCAM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HCAM can extrapolate to task sequences much longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HCAM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.
Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration
Unsupervised pretraining has been transformative in many supervised domains. However, applying such ideas to reinforcement learning (RL) presents a unique challenge in that fine-tuning does not involve mimicking task-specific data, but rather exploring and locating the solution through iterative self-improvement. In this work, we study how unlabeled prior trajectory data can be leveraged to learn efficient exploration strategies. While prior data can be used to pretrain a set of low-level skills, or as additional off-policy data for online RL, it has been unclear how to combine these ideas effectively for online exploration. Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits. Our method first extracts low-level skills using a variational autoencoder (VAE), and then pseudo-relabels unlabeled trajectories using an optimistic reward model, transforming prior data into high-level, task-relevant examples. Finally, SUPE uses these transformed examples as additional off-policy data for online RL to learn a high-level policy that composes pretrained low-level skills to explore efficiently. We empirically show that SUPE reliably outperforms prior strategies, successfully solving a suite of long-horizon, sparse-reward tasks. Code: https://github.com/rail-berkeley/supe.
AntGPT: Can Large Language Models Help Long-term Action Anticipation from Videos?
Can we better anticipate an actor's future actions (e.g. mix eggs) by knowing what commonly happens after his/her current action (e.g. crack eggs)? What if we also know the longer-term goal of the actor (e.g. making egg fried rice)? The long-term action anticipation (LTA) task aims to predict an actor's future behavior from video observations in the form of verb and noun sequences, and it is crucial for human-machine interaction. We propose to formulate the LTA task from two perspectives: a bottom-up approach that predicts the next actions autoregressively by modeling temporal dynamics; and a top-down approach that infers the goal of the actor and plans the needed procedure to accomplish the goal. We hypothesize that large language models (LLMs), which have been pretrained on procedure text data (e.g. recipes, how-tos), have the potential to help LTA from both perspectives. It can help provide the prior knowledge on the possible next actions, and infer the goal given the observed part of a procedure, respectively. To leverage the LLMs, we propose a two-stage framework, AntGPT. It first recognizes the actions already performed in the observed videos and then asks an LLM to predict the future actions via conditioned generation, or to infer the goal and plan the whole procedure by chain-of-thought prompting. Empirical results on the Ego4D LTA v1 and v2 benchmarks, EPIC-Kitchens-55, as well as EGTEA GAZE+ demonstrate the effectiveness of our proposed approach. AntGPT achieves state-of-the-art performance on all above benchmarks, and can successfully infer the goal and thus perform goal-conditioned "counterfactual" prediction via qualitative analysis. Code and model will be released at https://brown-palm.github.io/AntGPT
An Information-Theoretic Analysis of Nonstationary Bandit Learning
In nonstationary bandit learning problems, the decision-maker must continually gather information and adapt their action selection as the latent state of the environment evolves. In each time period, some latent optimal action maximizes expected reward under the environment state. We view the optimal action sequence as a stochastic process, and take an information-theoretic approach to analyze attainable performance. We bound limiting per-period regret in terms of the entropy rate of the optimal action process. The bound applies to a wide array of problems studied in the literature and reflects the problem's information structure through its information-ratio.
Cost-Based Goal Recognition Meets Deep Learning
The ability to observe the effects of actions performed by others and to infer their intent, most likely goals, or course of action, is known as a plan or intention recognition cognitive capability and has long been one of the fundamental research challenges in AI. Deep learning has recently been making significant inroads on various pattern recognition problems, except for intention recognition. While extensively explored since the seventies, the problem remains unsolved for most interesting cases in various areas, ranging from natural language understanding to human behavior understanding based on video feeds. This paper compares symbolic inverse planning, one of the most investigated approaches to goal recognition, to deep learning using CNN and LTSM neural network architectures, on five synthetic benchmarks often used in the literature. The results show that the deep learning approach achieves better goal-prediction accuracy and timeliness than the symbolic cost-based plan recognizer in these domains. Although preliminary, these results point to interesting future research avenues.
AppAgentX: Evolving GUI Agents as Proficient Smartphone Users
Recent advancements in Large Language Models (LLMs) have led to the development of intelligent LLM-based agents capable of interacting with graphical user interfaces (GUIs). These agents demonstrate strong reasoning and adaptability, enabling them to perform complex tasks that traditionally required predefined rules. However, the reliance on step-by-step reasoning in LLM-based agents often results in inefficiencies, particularly for routine tasks. In contrast, traditional rule-based systems excel in efficiency but lack the intelligence and flexibility to adapt to novel scenarios. To address this challenge, we propose a novel evolutionary framework for GUI agents that enhances operational efficiency while retaining intelligence and flexibility. Our approach incorporates a memory mechanism that records the agent's task execution history. By analyzing this history, the agent identifies repetitive action sequences and evolves high-level actions that act as shortcuts, replacing these low-level operations and improving efficiency. This allows the agent to focus on tasks requiring more complex reasoning, while simplifying routine actions. Experimental results on multiple benchmark tasks demonstrate that our approach significantly outperforms existing methods in both efficiency and accuracy. The code will be open-sourced to support further research.
Online Continual Learning For Interactive Instruction Following Agents
In learning an embodied agent executing daily tasks via language directives, the literature largely assumes that the agent learns all training data at the beginning. We argue that such a learning scenario is less realistic since a robotic agent is supposed to learn the world continuously as it explores and perceives it. To take a step towards a more realistic embodied agent learning scenario, we propose two continual learning setups for embodied agents; learning new behaviors (Behavior Incremental Learning, Behavior-IL) and new environments (Environment Incremental Learning, Environment-IL) For the tasks, previous 'data prior' based continual learning methods maintain logits for the past tasks. However, the stored information is often insufficiently learned information and requires task boundary information, which might not always be available. Here, we propose to update them based on confidence scores without task boundary information during training (i.e., task-free) in a moving average fashion, named Confidence-Aware Moving Average (CAMA). In the proposed Behavior-IL and Environment-IL setups, our simple CAMA outperforms prior state of the art in our empirical validations by noticeable margins. The project page including codes is https://github.com/snumprlab/cl-alfred.
MMInA: Benchmarking Multihop Multimodal Internet Agents
Autonomous embodied agents live on an Internet of multimedia websites. Can they hop around multimodal websites to complete complex user tasks? Existing benchmarks fail to assess them in a realistic, evolving environment for their embodiment across websites. To answer this question, we present MMInA, a multihop and multimodal benchmark to evaluate the embodied agents for compositional Internet tasks, with several appealing properties: 1) Evolving real-world multimodal websites. Our benchmark uniquely operates on evolving real-world websites, ensuring a high degree of realism and applicability to natural user tasks. Our data includes 1,050 human-written tasks covering various domains such as shopping and travel, with each task requiring the agent to autonomously extract multimodal information from web pages as observations; 2) Multihop web browsing. Our dataset features naturally compositional tasks that require information from or actions on multiple websites to solve, to assess long-range reasoning capabilities on web tasks; 3) Holistic evaluation. We propose a novel protocol for evaluating an agent's progress in completing multihop tasks. We experiment with both standalone (multimodal) language models and heuristic-based web agents. Extensive experiments demonstrate that while long-chain multihop web tasks are easy for humans, they remain challenging for state-of-the-art web agents. We identify that agents are more likely to fail on the early hops when solving tasks of more hops, which results in lower task success rates. To address this issue, we propose a simple memory augmentation approach replaying past action trajectories to reflect. Our method significantly improved both the single-hop and multihop web browsing abilities of agents. See our code and data at https://mmina.cliangyu.com
On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling
On-policy reinforcement learning (RL) algorithms perform policy updates using i.i.d. trajectories collected by the current policy. However, after observing only a finite number of trajectories, on-policy sampling may produce data that fails to match the expected on-policy data distribution. This sampling error leads to noisy updates and data inefficient on-policy learning. Recent work in the policy evaluation setting has shown that non-i.i.d., off-policy sampling can produce data with lower sampling error than on-policy sampling can produce. Motivated by this observation, we introduce an adaptive, off-policy sampling method to improve the data efficiency of on-policy policy gradient algorithms. Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior policy that increases the probability of sampling actions that are under-sampled with respect to the current policy. Rather than discarding data from old policies -- as is commonly done in on-policy algorithms -- PROPS uses data collection to adjust the distribution of previously collected data to be approximately on-policy. We empirically evaluate PROPS on both continuous-action MuJoCo benchmark tasks as well as discrete-action tasks and demonstrate that (1) PROPS decreases sampling error throughout training and (2) improves the data efficiency of on-policy policy gradient algorithms. Our work improves the RL community's understanding of a nuance in the on-policy vs off-policy dichotomy: on-policy learning requires on-policy data, not on-policy sampling.
UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
We introduce UCF101 which is currently the largest dataset of human actions. It consists of 101 action classes, over 13k clips and 27 hours of video data. The database consists of realistic user uploaded videos containing camera motion and cluttered background. Additionally, we provide baseline action recognition results on this new dataset using standard bag of words approach with overall performance of 44.5%. To the best of our knowledge, UCF101 is currently the most challenging dataset of actions due to its large number of classes, large number of clips and also unconstrained nature of such clips.
Shaking the foundations: delusions in sequence models for interaction and control
The recent phenomenal success of language models has reinvigorated machine learning research, and large sequence models such as transformers are being applied to a variety of domains. One important problem class that has remained relatively elusive however is purposeful adaptive behavior. Currently there is a common perception that sequence models "lack the understanding of the cause and effect of their actions" leading them to draw incorrect inferences due to auto-suggestive delusions. In this report we explain where this mismatch originates, and show that it can be resolved by treating actions as causal interventions. Finally, we show that in supervised learning, one can teach a system to condition or intervene on data by training with factual and counterfactual error signals respectively.
SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation
Our goal is to synthesize 3D human motions given textual inputs describing simultaneous actions, for example 'waving hand' while 'walking' at the same time. We refer to generating such simultaneous movements as performing 'spatial compositions'. In contrast to temporal compositions that seek to transition from one action to another, spatial compositing requires understanding which body parts are involved in which action, to be able to move them simultaneously. Motivated by the observation that the correspondence between actions and body parts is encoded in powerful language models, we extract this knowledge by prompting GPT-3 with text such as "what are the body parts involved in the action <action name>?", while also providing the parts list and few-shot examples. Given this action-part mapping, we combine body parts from two motions together and establish the first automated method to spatially compose two actions. However, training data with compositional actions is always limited by the combinatorics. Hence, we further create synthetic data with this approach, and use it to train a new state-of-the-art text-to-motion generation model, called SINC ("SImultaneous actioN Compositions for 3D human motions"). In our experiments, that training with such GPT-guided synthetic data improves spatial composition generation over baselines. Our code is publicly available at https://sinc.is.tue.mpg.de/.
Last Switch Dependent Bandits with Monotone Payoff Functions
In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.
Empowering Large Language Model Agents through Action Learning
Large Language Model (LLM) Agents have recently garnered increasing interest yet they are limited in their ability to learn from trial and error, a key element of intelligent behavior. In this work, we argue that the capacity to learn new actions from experience is fundamental to the advancement of learning in LLM agents. While humans naturally expand their action spaces and develop skills through experiential learning, LLM agents typically operate within fixed action spaces, limiting their potential for growth. To address these challenges, our study explores open-action learning for language agents. We introduce a framework LearnAct with an iterative learning strategy to create and improve actions in the form of Python functions. In each iteration, LLM revises and updates the currently available actions based on the errors identified in unsuccessful training tasks, thereby enhancing action effectiveness. Our experimental evaluations across Robotic Planning and Alfworld environments reveal that after learning on a few training task instances, our approach to open-action learning markedly improves agent performance for the type of task (by 32 percent in AlfWorld compared to ReAct+Reflexion, for instance) highlighting the importance of experiential action learning in the development of more intelligent LLM agents.
Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena
Can Large Language Models (LLMs) simulate human behavior in complex environments? LLMs have recently been shown to exhibit advanced reasoning skills but much of NLP evaluation still relies on static benchmarks. Answering this requires evaluation environments that probe strategic reasoning in competitive, dynamic scenarios that involve long-term planning. We introduce AucArena, a novel simulation environment for evaluating LLMs within auctions, a setting chosen for being highly unpredictable and involving many skills related to resource and risk management, while also being easy to evaluate. We conduct several controlled simulations using state-of-the-art LLMs as bidding agents. We find that through simple prompting, LLMs do indeed demonstrate many of the skills needed for effectively engaging in auctions (e.g., managing budget, adhering to long-term goals and priorities), skills that we find can be sharpened by explicitly encouraging models to be adaptive and observe strategies in past auctions. These results are significant as they show the potential of using LLM agents to model intricate social dynamics, especially in competitive settings. However, we also observe considerable variability in the capabilities of individual LLMs. Notably, even our most advanced models (GPT-4) are occasionally surpassed by heuristic baselines and human agents, highlighting the potential for further improvements in the design of LLM agents and the important role that our simulation environment can play in further testing and refining agent architectures.
Augmenting Unsupervised Reinforcement Learning with Self-Reference
Humans possess the ability to draw on past experiences explicitly when learning new tasks and applying them accordingly. We believe this capacity for self-referencing is especially advantageous for reinforcement learning agents in the unsupervised pretrain-then-finetune setting. During pretraining, an agent's past experiences can be explicitly utilized to mitigate the nonstationarity of intrinsic rewards. In the finetuning phase, referencing historical trajectories prevents the unlearning of valuable exploratory behaviors. Motivated by these benefits, we propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information and enhance agent performance within the pretrain-finetune paradigm. Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark for model-free methods, recording an 86% IQM and a 16% Optimality Gap. Additionally, it improves current algorithms by up to 17% IQM and reduces the Optimality Gap by 31%. Beyond performance enhancement, the Self-Reference add-on also increases sample efficiency, a crucial attribute for real-world applications.
Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning
Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.edu
SAM2Act: Integrating Visual Foundation Model with A Memory Architecture for Robotic Manipulation
Robotic manipulation systems operating in diverse, dynamic environments must exhibit three critical abilities: multitask interaction, generalization to unseen scenarios, and spatial memory. While significant progress has been made in robotic manipulation, existing approaches often fall short in generalization to complex environmental variations and addressing memory-dependent tasks. To bridge this gap, we introduce SAM2Act, a multi-view robotic transformer-based policy that leverages multi-resolution upsampling with visual representations from large-scale foundation model. SAM2Act achieves a state-of-the-art average success rate of 86.8% across 18 tasks in the RLBench benchmark, and demonstrates robust generalization on The Colosseum benchmark, with only a 4.3% performance gap under diverse environmental perturbations. Building on this foundation, we propose SAM2Act+, a memory-based architecture inspired by SAM2, which incorporates a memory bank, an encoder, and an attention mechanism to enhance spatial memory. To address the need for evaluating memory-dependent tasks, we introduce MemoryBench, a novel benchmark designed to assess spatial memory and action recall in robotic manipulation. SAM2Act+ achieves competitive performance on MemoryBench, significantly outperforming existing approaches and pushing the boundaries of memory-enabled robotic systems. Project page: https://sam2act.github.io/
NeBuLa: A discourse aware Minecraft Builder
When engaging in collaborative tasks, humans efficiently exploit the semantic structure of a conversation to optimize verbal and nonverbal interactions. But in recent "language to code" or "language to action" models, this information is lacking. We show how incorporating the prior discourse and nonlinguistic context of a conversation situated in a nonlinguistic environment can improve the "language to action" component of such interactions. We fine tune an LLM to predict actions based on prior context; our model, NeBuLa, doubles the net-action F1 score over the baseline on this task of Jayannavar et al.(2020). We also investigate our model's ability to construct shapes and understand location descriptions using a synthetic dataset.
Online Temporal Action Localization with Memory-Augmented Transformer
Online temporal action localization (On-TAL) is the task of identifying multiple action instances given a streaming video. Since existing methods take as input only a video segment of fixed size per iteration, they are limited in considering long-term context and require tuning the segment size carefully. To overcome these limitations, we propose memory-augmented transformer (MATR). MATR utilizes the memory queue that selectively preserves the past segment features, allowing to leverage long-term context for inference. We also propose a novel action localization method that observes the current input segment to predict the end time of the ongoing action and accesses the memory queue to estimate the start time of the action. Our method outperformed existing methods on two datasets, THUMOS14 and MUSES, surpassing not only TAL methods in the online setting but also some offline TAL methods.
HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model
Large Language Model (LLM)-based agents exhibit significant potential across various domains, operating as interactive systems that process environmental observations to generate executable actions for target tasks. The effectiveness of these agents is significantly influenced by their memory mechanism, which records historical experiences as sequences of action-observation pairs. We categorize memory into two types: cross-trial memory, accumulated across multiple attempts, and in-trial memory (working memory), accumulated within a single attempt. While considerable research has optimized performance through cross-trial memory, the enhancement of agent performance through improved working memory utilization remains underexplored. Instead, existing approaches often involve directly inputting entire historical action-observation pairs into LLMs, leading to redundancy in long-horizon tasks. Inspired by human problem-solving strategies, this paper introduces HiAgent, a framework that leverages subgoals as memory chunks to manage the working memory of LLM-based agents hierarchically. Specifically, HiAgent prompts LLMs to formulate subgoals before generating executable actions and enables LLMs to decide proactively to replace previous subgoals with summarized observations, retaining only the action-observation pairs relevant to the current subgoal. Experimental results across five long-horizon tasks demonstrate that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8. Additionally, our analysis shows that HiAgent consistently improves performance across various steps, highlighting its robustness and generalizability. Project Page: https://github.com/HiAgent2024/HiAgent .
ReAct: Synergizing Reasoning and Acting in Language Models
While large language models (LLMs) have demonstrated impressive capabilities across tasks in language understanding and interactive decision making, their abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g. action plan generation) have primarily been studied as separate topics. In this paper, we explore the use of LLMs to generate both reasoning traces and task-specific actions in an interleaved manner, allowing for greater synergy between the two: reasoning traces help the model induce, track, and update action plans as well as handle exceptions, while actions allow it to interface with external sources, such as knowledge bases or environments, to gather additional information. We apply our approach, named ReAct, to a diverse set of language and decision making tasks and demonstrate its effectiveness over state-of-the-art baselines, as well as improved human interpretability and trustworthiness over methods without reasoning or acting components. Concretely, on question answering (HotpotQA) and fact verification (Fever), ReAct overcomes issues of hallucination and error propagation prevalent in chain-of-thought reasoning by interacting with a simple Wikipedia API, and generates human-like task-solving trajectories that are more interpretable than baselines without reasoning traces. On two interactive decision making benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and reinforcement learning methods by an absolute success rate of 34% and 10% respectively, while being prompted with only one or two in-context examples. Project site with code: https://react-lm.github.io
Goal-conditioned Imitation Learning
Designing rewards for Reinforcement Learning (RL) is challenging because it needs to convey the desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic when applying RL to robotics, where detecting whether the desired configuration is reached might require considerable supervision and instrumentation. Furthermore, we are often interested in being able to reach a wide range of configurations, hence setting up a different reward every time might be unpractical. Methods like Hindsight Experience Replay (HER) have recently shown promise to learn policies able to reach many goals, without the need of a reward. Unfortunately, without tricks like resetting to points along the trajectory, HER might require many samples to discover how to reach certain areas of the state-space. In this work we investigate different approaches to incorporate demonstrations to drastically speed up the convergence to a policy able to reach any goal, also surpassing the performance of an agent trained with other Imitation Learning algorithms. Furthermore, we show our method can also be used when the available expert trajectories do not contain the actions, which can leverage kinesthetic or third person demonstration. The code is available at https://sites.google.com/view/goalconditioned-il/.
Action Matching: Learning Stochastic Dynamics from Samples
Learning the continuous dynamics of a system from snapshots of its temporal marginals is a problem which appears throughout natural sciences and machine learning, including in quantum systems, single-cell biological data, and generative modeling. In these settings, we assume access to cross-sectional samples that are uncorrelated over time, rather than full trajectories of samples. In order to better understand the systems under observation, we would like to learn a model of the underlying process that allows us to propagate samples in time and thereby simulate entire individual trajectories. In this work, we propose Action Matching, a method for learning a rich family of dynamics using only independent samples from its time evolution. We derive a tractable training objective, which does not rely on explicit assumptions about the underlying dynamics and does not require back-propagation through differential equations or optimal transport solvers. Inspired by connections with optimal transport, we derive extensions of Action Matching to learn stochastic differential equations and dynamics involving creation and destruction of probability mass. Finally, we showcase applications of Action Matching by achieving competitive performance in a diverse set of experiments from biology, physics, and generative modeling.
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents
Can world knowledge learned by large language models (LLMs) be used to act in interactive environments? In this paper, we investigate the possibility of grounding high-level tasks, expressed in natural language (e.g. "make breakfast"), to a chosen set of actionable steps (e.g. "open fridge"). While prior work focused on learning from explicit step-by-step examples of how to act, we surprisingly find that if pre-trained LMs are large enough and prompted appropriately, they can effectively decompose high-level tasks into mid-level plans without any further training. However, the plans produced naively by LLMs often cannot map precisely to admissible actions. We propose a procedure that conditions on existing demonstrations and semantically translates the plans to admissible actions. Our evaluation in the recent VirtualHome environment shows that the resulting method substantially improves executability over the LLM baseline. The conducted human evaluation reveals a trade-off between executability and correctness but shows a promising sign towards extracting actionable knowledge from language models. Website at https://huangwl18.github.io/language-planner
ActionSwitch: Class-agnostic Detection of Simultaneous Actions in Streaming Videos
Online Temporal Action Localization (On-TAL) is a critical task that aims to instantaneously identify action instances in untrimmed streaming videos as soon as an action concludes -- a major leap from frame-based Online Action Detection (OAD). Yet, the challenge of detecting overlapping actions is often overlooked even though it is a common scenario in streaming videos. Current methods that can address concurrent actions depend heavily on class information, limiting their flexibility. This paper introduces ActionSwitch, the first class-agnostic On-TAL framework capable of detecting overlapping actions. By obviating the reliance on class information, ActionSwitch provides wider applicability to various situations, including overlapping actions of the same class or scenarios where class information is unavailable. This approach is complemented by the proposed "conservativeness loss", which directly embeds a conservative decision-making principle into the loss function for On-TAL. Our ActionSwitch achieves state-of-the-art performance in complex datasets, including Epic-Kitchens 100 targeting the challenging egocentric view and FineAction consisting of fine-grained actions.
MyoDex: A Generalizable Prior for Dexterous Manipulation
Human dexterity is a hallmark of motor control. Our hands can rapidly synthesize new behaviors despite the complexity (multi-articular and multi-joints, with 23 joints controlled by more than 40 muscles) of musculoskeletal sensory-motor circuits. In this work, we take inspiration from how human dexterity builds on a diversity of prior experiences, instead of being acquired through a single task. Motivated by this observation, we set out to develop agents that can build upon their previous experience to quickly acquire new (previously unattainable) behaviors. Specifically, our approach leverages multi-task learning to implicitly capture task-agnostic behavioral priors (MyoDex) for human-like dexterity, using a physiologically realistic human hand model - MyoHand. We demonstrate MyoDex's effectiveness in few-shot generalization as well as positive transfer to a large repertoire of unseen dexterous manipulation tasks. Agents leveraging MyoDex can solve approximately 3x more tasks, and 4x faster in comparison to a distillation baseline. While prior work has synthesized single musculoskeletal control behaviors, MyoDex is the first generalizable manipulation prior that catalyzes the learning of dexterous physiological control across a large variety of contact-rich behaviors. We also demonstrate the effectiveness of our paradigms beyond musculoskeletal control towards the acquisition of dexterity in 24 DoF Adroit Hand. Website: https://sites.google.com/view/myodex
VoxAct-B: Voxel-Based Acting and Stabilizing Policy for Bimanual Manipulation
Bimanual manipulation is critical to many robotics applications. In contrast to single-arm manipulation, bimanual manipulation tasks are challenging due to higher-dimensional action spaces. Prior works leverage large amounts of data and primitive actions to address this problem, but may suffer from sample inefficiency and limited generalization across various tasks. To this end, we propose VoxAct-B, a language-conditioned, voxel-based method that leverages Vision Language Models (VLMs) to prioritize key regions within the scene and reconstruct a voxel grid. We provide this voxel grid to our bimanual manipulation policy to learn acting and stabilizing actions. This approach enables more efficient policy learning from voxels and is generalizable to different tasks. In simulation, we show that VoxAct-B outperforms strong baselines on fine-grained bimanual manipulation tasks. Furthermore, we demonstrate VoxAct-B on real-world Open Drawer and Open Jar tasks using two UR5s. Code, data, and videos are available at https://voxact-b.github.io.