new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 11

MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders

Mental health disorders are one of the most serious diseases in the world. Most people with such a disease lack access to adequate care, which highlights the importance of training models for the diagnosis and treatment of mental health disorders. However, in the mental health domain, privacy concerns limit the accessibility of personalized treatment data, making it challenging to build powerful models. In this paper, we introduce MentalArena, a self-play framework to train language models by generating domain-specific personalized data, where we obtain a better model capable of making a personalized diagnosis and treatment (as a therapist) and providing information (as a patient). To accurately model human-like mental health patients, we devise Symptom Encoder, which simulates a real patient from both cognition and behavior perspectives. To address intent bias during patient-therapist interactions, we propose Symptom Decoder to compare diagnosed symptoms with encoded symptoms, and dynamically manage the dialogue between patient and therapist according to the identified deviations. We evaluated MentalArena against 6 benchmarks, including biomedicalQA and mental health tasks, compared to 6 advanced models. Our models, fine-tuned on both GPT-3.5 and Llama-3-8b, significantly outperform their counterparts, including GPT-4o. We hope that our work can inspire future research on personalized care. Code is available in https://github.com/Scarelette/MentalArena/tree/main

Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data

In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.

Conceptualizing Suicidal Behavior: Utilizing Explanations of Predicted Outcomes to Analyze Longitudinal Social Media Data

The COVID-19 pandemic has escalated mental health crises worldwide, with social isolation and economic instability contributing to a rise in suicidal behavior. Suicide can result from social factors such as shame, abuse, abandonment, and mental health conditions like depression, Post-Traumatic Stress Disorder (PTSD), Attention-Deficit/Hyperactivity Disorder (ADHD), anxiety disorders, and bipolar disorders. As these conditions develop, signs of suicidal ideation may manifest in social media interactions. Analyzing social media data using artificial intelligence (AI) techniques can help identify patterns of suicidal behavior, providing invaluable insights for suicide prevention agencies, professionals, and broader community awareness initiatives. Machine learning algorithms for this purpose require large volumes of accurately labeled data. Previous research has not fully explored the potential of incorporating explanations in analyzing and labeling longitudinal social media data. In this study, we employed a model explanation method, Layer Integrated Gradients, on top of a fine-tuned state-of-the-art language model, to assign each token from Reddit users' posts an attribution score for predicting suicidal ideation. By extracting and analyzing attributions of tokens from the data, we propose a methodology for preliminary screening of social media posts for suicidal ideation without using large language models during inference.

MODMA dataset: a Multi-modal Open Dataset for Mental-disorder Analysis

According to the World Health Organization, the number of mental disorder patients, especially depression patients, has grown rapidly and become a leading contributor to the global burden of disease. However, the present common practice of depression diagnosis is based on interviews and clinical scales carried out by doctors, which is not only labor-consuming but also time-consuming. One important reason is due to the lack of physiological indicators for mental disorders. With the rising of tools such as data mining and artificial intelligence, using physiological data to explore new possible physiological indicators of mental disorder and creating new applications for mental disorder diagnosis has become a new research hot topic. However, good quality physiological data for mental disorder patients are hard to acquire. We present a multi-modal open dataset for mental-disorder analysis. The dataset includes EEG and audio data from clinically depressed patients and matching normal controls. All our patients were carefully diagnosed and selected by professional psychiatrists in hospitals. The EEG dataset includes not only data collected using traditional 128-electrodes mounted elastic cap, but also a novel wearable 3-electrode EEG collector for pervasive applications. The 128-electrodes EEG signals of 53 subjects were recorded as both in resting state and under stimulation; the 3-electrode EEG signals of 55 subjects were recorded in resting state; the audio data of 52 subjects were recorded during interviewing, reading, and picture description. We encourage other researchers in the field to use it for testing their methods of mental-disorder analysis.

The order in speech disorder: a scoping review of state of the art machine learning methods for clinical speech classification

Background:Speech patterns have emerged as potential diagnostic markers for conditions with varying etiologies. Machine learning (ML) presents an opportunity to harness these patterns for accurate disease diagnosis. Objective: This review synthesized findings from studies exploring ML's capability in leveraging speech for the diagnosis of neurological, laryngeal and mental disorders. Methods: A systematic examination of 564 articles was conducted with 91 articles included in the study, which encompassed a wide spectrum of conditions, ranging from voice pathologies to mental and neurological disorders. Methods for speech classifications were assessed based on the relevant studies and scored between 0-10 based on the reported diagnostic accuracy of their ML models. Results: High diagnostic accuracies were consistently observed for laryngeal disorders, dysarthria, and changes related to speech in Parkinsons disease. These findings indicate the robust potential of speech as a diagnostic tool. Disorders like depression, schizophrenia, mild cognitive impairment and Alzheimers dementia also demonstrated high accuracies, albeit with some variability across studies. Meanwhile, disorders like OCD and autism highlighted the need for more extensive research to ascertain the relationship between speech patterns and the respective conditions. Conclusion: ML models utilizing speech patterns demonstrate promising potential in diagnosing a range of mental, laryngeal, and neurological disorders. However, the efficacy varies across conditions, and further research is needed. The integration of these models into clinical practice could potentially revolutionize the evaluation and diagnosis of a number of different medical conditions.

Depression Detection and Analysis using Large Language Models on Textual and Audio-Visual Modalities

Depression has proven to be a significant public health issue, profoundly affecting the psychological well-being of individuals. If it remains undiagnosed, depression can lead to severe health issues, which can manifest physically and even lead to suicide. Generally, Diagnosing depression or any other mental disorder involves conducting semi-structured interviews alongside supplementary questionnaires, including variants of the Patient Health Questionnaire (PHQ) by Clinicians and mental health professionals. This approach places significant reliance on the experience and judgment of trained physicians, making the diagnosis susceptible to personal biases. Given that the underlying mechanisms causing depression are still being actively researched, physicians often face challenges in diagnosing and treating the condition, particularly in its early stages of clinical presentation. Recently, significant strides have been made in Artificial neural computing to solve problems involving text, image, and speech in various domains. Our analysis has aimed to leverage these state-of-the-art (SOTA) models in our experiments to achieve optimal outcomes leveraging multiple modalities. The experiments were performed on the Extended Distress Analysis Interview Corpus Wizard of Oz dataset (E-DAIC) corpus presented in the Audio/Visual Emotion Challenge (AVEC) 2019 Challenge. The proposed solutions demonstrate better results achieved by Proprietary and Open-source Large Language Models (LLMs), which achieved a Root Mean Square Error (RMSE) score of 3.98 on Textual Modality, beating the AVEC 2019 challenge baseline results and current SOTA regression analysis architectures. Additionally, the proposed solution achieved an accuracy of 71.43% in the classification task. The paper also includes a novel audio-visual multi-modal network that predicts PHQ-8 scores with an RMSE of 6.51.

Automated speech- and text-based classification of neuropsychiatric conditions in a multidiagnostic setting

Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions. However, most studies only compare a single clinical group to healthy controls, whereas clinical practice often requires differentiating between multiple potential diagnoses (multiclass settings). To address this, we assembled a dataset of repeated recordings from 420 participants (67 with major depressive disorder, 106 with schizophrenia and 46 with autism, as well as matched controls), and tested the performance of a range of conventional machine learning models and advanced Transformer models on both binary and multiclass classification, based on voice and text features. While binary models performed comparably to previous research (F1 scores between 0.54-0.75 for autism spectrum disorder, ASD; 0.67-0.92 for major depressive disorder, MDD; and 0.71-0.83 for schizophrenia); when differentiating between multiple diagnostic groups performance decreased markedly (F1 scores between 0.35-0.44 for ASD, 0.57-0.75 for MDD, 0.15-0.66 for schizophrenia, and 0.38-0.52 macro F1). Combining voice and text-based models yielded increased performance, suggesting that they capture complementary diagnostic information. Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations, or markers of clinical features that overlap across conditions, rather than identifying markers specific to individual conditions. We provide recommendations for future research in the field, suggesting increased focus on developing larger transdiagnostic datasets that include more fine-grained clinical features, and that can support the development of models that better capture the complexity of neuropsychiatric conditions and naturalistic diagnostic assessment.

Large Language Model for Mental Health: A Systematic Review

Large language models (LLMs) have received much attention and shown their potential in digital health, while their application in mental health is subject to ongoing debate. This systematic review aims to summarize and characterize the use of LLMs in mental health by investigating the strengths and limitations of the latest work in LLMs and discusses the challenges and opportunities for early screening, digital interventions, and other clinical applications in mental health. Following PRISMA guidelines, we examined English articles from PubMed, DBLP Computer Science Bibliography, and IEEE Xplore, published between 1 January 2017, and 1 September 2023, focusing on mental health and LLMs. The review analyzed 32 articles, including mental health analysis using social media datasets (n=13), mental health chatbots (n=10), and other mental health applications (n=9). Findings reveal LLMs' effectiveness in mental health issue detection and the enhancement of telepsychological services through personalised healthcare. Nonetheless, risks like text inconsistencies, hallucinatory content, and the lack of an ethical framework raise concerns about their clinical use. Despite these challenges, the advancement of LLMs underscores their potential as innovative clinical tools, necessitating further research and development. The review emphasizes that LLMs should complement, not replace, professional mental health services.

PATIENT-Ψ: Using Large Language Models to Simulate Patients for Training Mental Health Professionals

Mental illness remains one of the most critical public health issues. Despite its importance, many mental health professionals highlight a disconnect between their training and actual real-world patient practice. To help bridge this gap, we propose PATIENT-{\Psi}, a novel patient simulation framework for cognitive behavior therapy (CBT) training. To build PATIENT-{\Psi}, we construct diverse patient cognitive models based on CBT principles and use large language models (LLMs) programmed with these cognitive models to act as a simulated therapy patient. We propose an interactive training scheme, PATIENT-{\Psi}-TRAINER, for mental health trainees to practice a key skill in CBT -- formulating the cognitive model of the patient -- through role-playing a therapy session with PATIENT-{\Psi}. To evaluate PATIENT-{\Psi}, we conducted a comprehensive user study of 13 mental health trainees and 20 experts. The results demonstrate that practice using PATIENT-{\Psi}-TRAINER enhances the perceived skill acquisition and confidence of the trainees beyond existing forms of training such as textbooks, videos, and role-play with non-patients. Based on the experts' perceptions, PATIENT-{\Psi} is perceived to be closer to real patient interactions than GPT-4, and PATIENT-{\Psi}-TRAINER holds strong promise to improve trainee competencies. Our code and data are released at https://github.com/ruiyiw/patient-psi.

PTSD in the Wild: A Video Database for Studying Post-Traumatic Stress Disorder Recognition in Unconstrained Environments

POST-traumatic stress disorder (PTSD) is a chronic and debilitating mental condition that is developed in response to catastrophic life events, such as military combat, sexual assault, and natural disasters. PTSD is characterized by flashbacks of past traumatic events, intrusive thoughts, nightmares, hypervigilance, and sleep disturbance, all of which affect a person's life and lead to considerable social, occupational, and interpersonal dysfunction. The diagnosis of PTSD is done by medical professionals using self-assessment questionnaire of PTSD symptoms as defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM). In this paper, and for the first time, we collected, annotated, and prepared for public distribution a new video database for automatic PTSD diagnosis, called PTSD in the wild dataset. The database exhibits "natural" and big variability in acquisition conditions with different pose, facial expression, lighting, focus, resolution, age, gender, race, occlusions and background. In addition to describing the details of the dataset collection, we provide a benchmark for evaluating computer vision and machine learning based approaches on PTSD in the wild dataset. In addition, we propose and we evaluate a deep learning based approach for PTSD detection in respect to the given benchmark. The proposed approach shows very promising results. Interested researcher can download a copy of PTSD-in-the wild dataset from: http://www.lissi.fr/PTSD-Dataset/

What Makes Digital Support Effective? How Therapeutic Skills Affect Clinical Well-Being

Online mental health support communities have grown in recent years for providing accessible mental and emotional health support through volunteer counselors. Despite millions of people participating in chat support on these platforms, the clinical effectiveness of these communities on mental health symptoms remains unknown. Furthermore, although volunteers receive some training based on established therapeutic skills studied in face-to-face environments such as active listening and motivational interviewing, it remains understudied how the usage of these skills in this online context affects people's mental health status. In our work, we collaborate with one of the largest online peer support platforms and use both natural language processing and machine learning techniques to measure how one-on-one support chats affect depression and anxiety symptoms. We measure how the techniques and characteristics of support providers, such as using affirmation, empathy, and past experience on the platform, affect support-seekers' mental health changes. We find that online peer support chats improve both depression and anxiety symptoms with a statistically significant but relatively small effect size. Additionally, support providers' techniques such as emphasizing the autonomy of the client lead to better mental health outcomes. However, we also found that some behaviors (e.g. persuading) are actually harmful to depression and anxiety outcomes. Our work provides key understanding for mental health care in the online setting and designing training systems for online support providers.

Nigerian Schizophrenia EEG Dataset (NSzED) Towards Data-Driven Psychiatry in Africa

This work has been carried out to improve the dearth of high-quality EEG datasets used for schizophrenia diagnostic tools development and studies from populations of developing and underdeveloped regions of the world. To this aim, the presented dataset contains international 10/20 system EEG recordings from West African subjects of Nigerian origin in restful states, mental arithmetic task execution states and while passively reacting to auditory stimuli, the first of its kind from the region and continent. The subjects are divided into patients and healthy controls and recorded from 37 patients and 22 healthy control subjects identified by the Mini International Schizophrenia Interview (MINI) and also assessed by the Positive and Negative Symptoms Scale (PANSS) and the World Health Organization Disability Assessment Schedule (WHODAS). All patients are admitted schizophrenia patients of the Mental Health Ward, Medical Outpatient Department of the Obafemi Awolowo University Teaching Hospital Complex (OAUTHC, Ile-Ife) and its subsidiary Wesley Guild Hospital Unit (OAUTHC, Ilesa). Controls are drawn from students and clinicians who volunteered to participate in the study at the Mental Health Ward of OAUTHC and the Wesley Guild Hospital Unit. This dataset is the first version of the Nigerian schizophrenia dataset (NSzED) and can be used by the neuroscience and computational psychiatry research community studying the diagnosis and prognosis of schizophrenia using the electroencephalogram signal modality.

Natural Language Processing in Electronic Health Records in Relation to Healthcare Decision-making: A Systematic Review

Background: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. Methodology: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: 1) medical note classification, 2) clinical entity recognition, 3) text summarisation, 4) deep learning (DL) and transfer learning architecture, 5) information extraction, 6) Medical language translation and 7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Result and Discussion: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. Conclusion: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.

Artificial Intelligence in Mental Health and Well-Being: Evolution, Current Applications, Future Challenges, and Emerging Evidence

Artificial Intelligence (AI) is a broad field that is upturning mental health care in many ways, from addressing anxiety, depression, and stress to increasing access, personalization of treatment, and real-time monitoring that enhances patient outcomes. The current paper discusses the evolution, present application, and future challenges in the field of AI for mental health and well-being. From the early chatbot models, such as ELIZA, to modern machine learning systems, the integration of AI in mental health has grown rapidly to augment traditional treatment and open innovative solutions. AI-driven tools provide continuous support, offering personalized interventions and addressing issues such as treatment access and patient stigma. AI also enables early diagnosis through the analysis of complex datasets, including speech patterns and social media behavior, to detect early signs of conditions like depression and Post-Traumatic Stress Disorder (PTSD). Ethical challenges persist, however, most notably around privacy, data security, and algorithmic bias. With AI at the core of mental health care, there is a dire need to develop strong ethical frameworks that ensure patient rights are protected, access is equitable, and transparency is maintained in AI applications. Going forward, the role of AI in mental health will continue to evolve, and continued research and policy development will be needed to meet the diverse needs of patients while mitigating associated risks.

Comparing the Efficacy of GPT-4 and Chat-GPT in Mental Health Care: A Blind Assessment of Large Language Models for Psychological Support

Background: Rapid advancements in natural language processing have led to the development of large language models with the potential to revolutionize mental health care. These models have shown promise in assisting clinicians and providing support to individuals experiencing various psychological challenges. Objective: This study aims to compare the performance of two large language models, GPT-4 and Chat-GPT, in responding to a set of 18 psychological prompts, to assess their potential applicability in mental health care settings. Methods: A blind methodology was employed, with a clinical psychologist evaluating the models' responses without knowledge of their origins. The prompts encompassed a diverse range of mental health topics, including depression, anxiety, and trauma, to ensure a comprehensive assessment. Results: The results demonstrated a significant difference in performance between the two models (p > 0.05). GPT-4 achieved an average rating of 8.29 out of 10, while Chat-GPT received an average rating of 6.52. The clinical psychologist's evaluation suggested that GPT-4 was more effective at generating clinically relevant and empathetic responses, thereby providing better support and guidance to potential users. Conclusions: This study contributes to the growing body of literature on the applicability of large language models in mental health care settings. The findings underscore the importance of continued research and development in the field to optimize these models for clinical use. Further investigation is necessary to understand the specific factors underlying the performance differences between the two models and to explore their generalizability across various populations and mental health conditions.