new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

UniSim: A Neural Closed-Loop Sensor Simulator

Rigorously testing autonomy systems is essential for making safe self-driving vehicles (SDV) a reality. It requires one to generate safety critical scenarios beyond what can be collected safely in the world, as many scenarios happen rarely on public roads. To accurately evaluate performance, we need to test the SDV on these scenarios in closed-loop, where the SDV and other actors interact with each other at each timestep. Previously recorded driving logs provide a rich resource to build these new scenarios from, but for closed loop evaluation, we need to modify the sensor data based on the new scene configuration and the SDV's decisions, as actors might be added or removed and the trajectories of existing actors and the SDV will differ from the original log. In this paper, we present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle and converts it into a realistic closed-loop multi-sensor simulation. UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene, and composites them together to simulate LiDAR and camera data at new viewpoints, with actors added or removed and at new placements. To better handle extrapolated views, we incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions. Our experiments show UniSim can simulate realistic sensor data with small domain gap on downstream tasks. With UniSim, we demonstrate closed-loop evaluation of an autonomy system on safety-critical scenarios as if it were in the real world.

Machine Translation by Projecting Text into the Same Phonetic-Orthographic Space Using a Common Encoding

The use of subword embedding has proved to be a major innovation in Neural Machine Translation (NMT). It helps NMT to learn better context vectors for Low Resource Languages (LRLs) so as to predict the target words by better modelling the morphologies of the two languages and also the morphosyntax transfer. Even so, their performance for translation in Indian language to Indian language scenario is still not as good as for resource-rich languages. One reason for this is the relative morphological richness of Indian languages, while another is that most of them fall into the extremely low resource or zero-shot categories. Since most major Indian languages use Indic or Brahmi origin scripts, the text written in them is highly phonetic in nature and phonetically similar in terms of abstract letters and their arrangements. We use these characteristics of Indian languages and their scripts to propose an approach based on common multilingual Latin-based encodings (WX notation) that take advantage of language similarity while addressing the morphological complexity issue in NMT. These multilingual Latin-based encodings in NMT, together with Byte Pair Embedding (BPE) allow us to better exploit their phonetic and orthographic as well as lexical similarities to improve the translation quality by projecting different but similar languages on the same orthographic-phonetic character space. We verify the proposed approach by demonstrating experiments on similar language pairs (Gujarati-Hindi, Marathi-Hindi, Nepali-Hindi, Maithili-Hindi, Punjabi-Hindi, and Urdu-Hindi) under low resource conditions. The proposed approach shows an improvement in a majority of cases, in one case as much as ~10 BLEU points compared to baseline techniques for similar language pairs. We also get up to ~1 BLEU points improvement on distant and zero-shot language pairs.

Measuring Large Language Models Capacity to Annotate Journalistic Sourcing

Since the launch of ChatGPT in late 2022, the capacities of Large Language Models and their evaluation have been in constant discussion and evaluation both in academic research and in the industry. Scenarios and benchmarks have been developed in several areas such as law, medicine and math (Bommasani et al., 2023) and there is continuous evaluation of model variants. One area that has not received sufficient scenario development attention is journalism, and in particular journalistic sourcing and ethics. Journalism is a crucial truth-determination function in democracy (Vincent, 2023), and sourcing is a crucial pillar to all original journalistic output. Evaluating the capacities of LLMs to annotate stories for the different signals of sourcing and how reporters justify them is a crucial scenario that warrants a benchmark approach. It offers potential to build automated systems to contrast more transparent and ethically rigorous forms of journalism with everyday fare. In this paper we lay out a scenario to evaluate LLM performance on identifying and annotating sourcing in news stories on a five-category schema inspired from journalism studies (Gans, 2004). We offer the use case, our dataset and metrics and as the first step towards systematic benchmarking. Our accuracy findings indicate LLM-based approaches have more catching to do in identifying all the sourced statements in a story, and equally, in matching the type of sources. An even harder task is spotting source justifications.

Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models

The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.

The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources

Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.

Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey

Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.

Imagination Augmented Generation: Learning to Imagine Richer Context for Question Answering over Large Language Models

Retrieval-Augmented-Generation and Gener-ation-Augmented-Generation have been proposed to enhance the knowledge required for question answering over Large Language Models (LLMs). However, the former depends on external resources, and both require incorporating the explicit documents into the context, which results in longer contexts that lead to more resource consumption. Recent works indicate that LLMs have modeled rich knowledge, albeit not effectively triggered or activated. Inspired by this, we propose a novel knowledge-augmented framework, Imagination-Augmented-Generation (IAG), which simulates the human capacity to compensate for knowledge deficits while answering questions solely through imagination, without relying on external resources. Guided by IAG, we propose an imagine richer context method for question answering (IMcQA), which obtains richer context through the following two modules: explicit imagination by generating a short dummy document with long context compress and implicit imagination with HyperNetwork for generating adapter weights. Experimental results on three datasets demonstrate that IMcQA exhibits significant advantages in both open-domain and closed-book settings, as well as in both in-distribution performance and out-of-distribution generalizations. Our code will be available at https://github.com/Xnhyacinth/IAG.

Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI

With the growing attention and investment in recent AI approaches such as large language models, the narrative that the larger the AI system the more valuable, powerful and interesting it is is increasingly seen as common sense. But what is this assumption based on, and how are we measuring value, power, and performance? And what are the collateral consequences of this race to ever-increasing scale? Here, we scrutinize the current scaling trends and trade-offs across multiple axes and refute two common assumptions underlying the 'bigger-is-better' AI paradigm: 1) that improved performance is a product of increased scale, and 2) that all interesting problems addressed by AI require large-scale models. Rather, we argue that this approach is not only fragile scientifically, but comes with undesirable consequences. First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint. Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate. Finally, it exacerbates a concentration of power, which centralizes decision-making in the hands of a few actors while threatening to disempower others in the context of shaping both AI research and its applications throughout society.

RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture

There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains.

Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media

This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.

The Open Source Advantage in Large Language Models (LLMs)

Large language models (LLMs) mark a key shift in natural language processing (NLP), having advanced text generation, translation, and domain-specific reasoning. Closed-source models like GPT-4, powered by proprietary datasets and extensive computational resources, lead with state-of-the-art performance today. However, they face criticism for their "black box" nature and for limiting accessibility in a manner that hinders reproducibility and equitable AI development. By contrast, open-source initiatives like LLaMA and BLOOM prioritize democratization through community-driven development and computational efficiency. These models have significantly reduced performance gaps, particularly in linguistic diversity and domain-specific applications, while providing accessible tools for global researchers and developers. Notably, both paradigms rely on foundational architectural innovations, such as the Transformer framework by Vaswani et al. (2017). Closed-source models excel by scaling effectively, while open-source models adapt to real-world applications in underrepresented languages and domains. Techniques like Low-Rank Adaptation (LoRA) and instruction-tuning datasets enable open-source models to achieve competitive results despite limited resources. To be sure, the tension between closed-source and open-source approaches underscores a broader debate on transparency versus proprietary control in AI. Ethical considerations further highlight this divide. Closed-source systems restrict external scrutiny, while open-source models promote reproducibility and collaboration but lack standardized auditing documentation frameworks to mitigate biases. Hybrid approaches that leverage the strengths of both paradigms are likely to shape the future of LLM innovation, ensuring accessibility, competitive technical performance, and ethical deployment.

Evaluating Language-Model Agents on Realistic Autonomous Tasks

In this report, we explore the ability of language model agents to acquire resources, create copies of themselves, and adapt to novel challenges they encounter in the wild. We refer to this cluster of capabilities as "autonomous replication and adaptation" or ARA. We believe that systems capable of ARA could have wide-reaching and hard-to-anticipate consequences, and that measuring and forecasting ARA may be useful for informing measures around security, monitoring, and alignment. Additionally, once a system is capable of ARA, placing bounds on a system's capabilities may become significantly more difficult. We construct four simple example agents that combine language models with tools that allow them to take actions in the world. We then evaluate these agents on 12 tasks relevant to ARA. We find that these language model agents can only complete the easiest tasks from this list, although they make some progress on the more challenging tasks. Unfortunately, these evaluations are not adequate to rule out the possibility that near-future agents will be capable of ARA. In particular, we do not think that these evaluations provide good assurance that the ``next generation'' of language models (e.g. 100x effective compute scaleup on existing models) will not yield agents capable of ARA, unless intermediate evaluations are performed during pretraining. Relatedly, we expect that fine-tuning of the existing models could produce substantially more competent agents, even if the fine-tuning is not directly targeted at ARA.

Generative Judge for Evaluating Alignment

The rapid development of Large Language Models (LLMs) has substantially expanded the range of tasks they can address. In the field of Natural Language Processing (NLP), researchers have shifted their focus from conventional NLP tasks (e.g., sequence tagging and parsing) towards tasks that revolve around aligning with human needs (e.g., brainstorming and email writing). This shift in task distribution imposes new requirements on evaluating these aligned models regarding generality (i.e., assessing performance across diverse scenarios), flexibility (i.e., examining under different protocols), and interpretability (i.e., scrutinizing models with explanations). In this paper, we propose a generative judge with 13B parameters, Auto-J, designed to address these challenges. Our model is trained on user queries and LLM-generated responses under massive real-world scenarios and accommodates diverse evaluation protocols (e.g., pairwise response comparison and single-response evaluation) with well-structured natural language critiques. To demonstrate the efficacy of our approach, we construct a new testbed covering 58 different scenarios. Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models, by a large margin. We also provide detailed analysis and case studies to further reveal the potential of our method and make a variety of resources public at https://github.com/GAIR-NLP/auto-j.

Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents

As AI systems pervade human life, ensuring that large language models (LLMs) make safe decisions remains a significant challenge. We introduce the Governance of the Commons Simulation (GovSim), a generative simulation platform designed to study strategic interactions and cooperative decision-making in LLMs. In GovSim, a society of AI agents must collectively balance exploiting a common resource with sustaining it for future use. This environment enables the study of how ethical considerations, strategic planning, and negotiation skills impact cooperative outcomes. We develop an LLM-based agent architecture and test it with the leading open and closed LLMs. We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%. Ablations reveal that successful multi-agent communication between agents is critical for achieving cooperation in these cases. Furthermore, our analyses show that the failure to achieve sustainable cooperation in most LLMs stems from their inability to formulate and analyze hypotheses about the long-term effects of their actions on the equilibrium of the group. Finally, we show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability. Taken together, GovSim enables us to study the mechanisms that underlie sustainable self-government with specificity and scale. We open source the full suite of our research results, including the simulation environment, agent prompts, and a comprehensive web interface.

GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence

Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories' complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an ``asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative's complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method.

ClimateGPT: Towards AI Synthesizing Interdisciplinary Research on Climate Change

This paper introduces ClimateGPT, a model family of domain-specific large language models that synthesize interdisciplinary research on climate change. We trained two 7B models from scratch on a science-oriented dataset of 300B tokens. For the first model, the 4.2B domain-specific tokens were included during pre-training and the second was adapted to the climate domain after pre-training. Additionally, ClimateGPT-7B, 13B and 70B are continuously pre-trained from Llama~2 on a domain-specific dataset of 4.2B tokens. Each model is instruction fine-tuned on a high-quality and human-generated domain-specific dataset that has been created in close cooperation with climate scientists. To reduce the number of hallucinations, we optimize the model for retrieval augmentation and propose a hierarchical retrieval strategy. To increase the accessibility of our model to non-English speakers, we propose to make use of cascaded machine translation and show that this approach can perform comparably to natively multilingual models while being easier to scale to a large number of languages. Further, to address the intrinsic interdisciplinary aspect of climate change we consider different research perspectives. Therefore, the model can produce in-depth answers focusing on different perspectives in addition to an overall answer. We propose a suite of automatic climate-specific benchmarks to evaluate LLMs. On these benchmarks, ClimateGPT-7B performs on par with the ten times larger Llama-2-70B Chat model while not degrading results on general domain benchmarks. Our human evaluation confirms the trends we saw in our benchmarks. All models were trained and evaluated using renewable energy and are released publicly.

TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs

Artificial Intelligence (AI) has made incredible progress recently. On the one hand, advanced foundation models like ChatGPT can offer powerful conversation, in-context learning and code generation abilities on a broad range of open-domain tasks. They can also generate high-level solution outlines for domain-specific tasks based on the common sense knowledge they have acquired. However, they still face difficulties with some specialized tasks because they lack enough domain-specific data during pre-training or they often have errors in their neural network computations on those tasks that need accurate executions. On the other hand, there are also many existing models and systems (symbolic-based or neural-based) that can do some domain-specific tasks very well. However, due to the different implementation or working mechanisms, they are not easily accessible or compatible with foundation models. Therefore, there is a clear and pressing need for a mechanism that can leverage foundation models to propose task solution outlines and then automatically match some of the sub-tasks in the outlines to the off-the-shelf models and systems with special functionalities to complete them. Inspired by this, we introduce TaskMatrix.AI as a new AI ecosystem that connects foundation models with millions of APIs for task completion. Unlike most previous work that aimed to improve a single AI model, TaskMatrix.AI focuses more on using existing foundation models (as a brain-like central system) and APIs of other AI models and systems (as sub-task solvers) to achieve diversified tasks in both digital and physical domains. As a position paper, we will present our vision of how to build such an ecosystem, explain each key component, and use study cases to illustrate both the feasibility of this vision and the main challenges we need to address next.

Using Advanced LLMs to Enhance Smaller LLMs: An Interpretable Knowledge Distillation Approach

Advanced Large language models (LLMs) like GPT-4 or LlaMa 3 provide superior performance in complex human-like interactions. But they are costly, or too large for edge devices such as smartphones and harder to self-host, leading to security and privacy concerns. This paper introduces a novel interpretable knowledge distillation approach to enhance the performance of smaller, more economical LLMs that firms can self-host. We study this problem in the context of building a customer service agent aimed at achieving high customer satisfaction through goal-oriented dialogues. Unlike traditional knowledge distillation, where the "student" model learns directly from the "teacher" model's responses via fine-tuning, our interpretable "strategy" teaching approach involves the teacher providing strategies to improve the student's performance in various scenarios. This method alternates between a "scenario generation" step and a "strategies for improvement" step, creating a customized library of scenarios and optimized strategies for automated prompting. The method requires only black-box access to both student and teacher models; hence it can be used without manipulating model parameters. In our customer service application, the method improves performance, and the learned strategies are transferable to other LLMs and scenarios beyond the training set. The method's interpretabilty helps safeguard against potential harms through human audit.

Learning to Generate Research Idea with Dynamic Control

The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.

LLM360 K2: Building a 65B 360-Open-Source Large Language Model from Scratch

We detail the training of the LLM360 K2-65B model, scaling up our 360-degree OPEN SOURCE approach to the largest and most powerful models under project LLM360. While open-source LLMs continue to advance, the answer to "How are the largest LLMs trained?" remains unclear within the community. The implementation details for such high-capacity models are often protected due to business considerations associated with their high cost. This lack of transparency prevents LLM researchers from leveraging valuable insights from prior experience, e.g., "What are the best practices for addressing loss spikes?" The LLM360 K2 project addresses this gap by providing full transparency and access to resources accumulated during the training of LLMs at the largest scale. This report highlights key elements of the K2 project, including our first model, K2 DIAMOND, a 65 billion-parameter LLM that surpasses LLaMA-65B and rivals LLaMA2-70B, while requiring fewer FLOPs and tokens. We detail the implementation steps and present a longitudinal analysis of K2 DIAMOND's capabilities throughout its training process. We also outline ongoing projects such as TXT360, setting the stage for future models in the series. By offering previously unavailable resources, the K2 project also resonates with the 360-degree OPEN SOURCE principles of transparency, reproducibility, and accessibility, which we believe are vital in the era of resource-intensive AI research.

Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena

Can Large Language Models (LLMs) simulate human behavior in complex environments? LLMs have recently been shown to exhibit advanced reasoning skills but much of NLP evaluation still relies on static benchmarks. Answering this requires evaluation environments that probe strategic reasoning in competitive, dynamic scenarios that involve long-term planning. We introduce AucArena, a novel simulation environment for evaluating LLMs within auctions, a setting chosen for being highly unpredictable and involving many skills related to resource and risk management, while also being easy to evaluate. We conduct several controlled simulations using state-of-the-art LLMs as bidding agents. We find that through simple prompting, LLMs do indeed demonstrate many of the skills needed for effectively engaging in auctions (e.g., managing budget, adhering to long-term goals and priorities), skills that we find can be sharpened by explicitly encouraging models to be adaptive and observe strategies in past auctions. These results are significant as they show the potential of using LLM agents to model intricate social dynamics, especially in competitive settings. However, we also observe considerable variability in the capabilities of individual LLMs. Notably, even our most advanced models (GPT-4) are occasionally surpassed by heuristic baselines and human agents, highlighting the potential for further improvements in the design of LLM agents and the important role that our simulation environment can play in further testing and refining agent architectures.

The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4

In recent years, groundbreaking advancements in natural language processing have culminated in the emergence of powerful large language models (LLMs), which have showcased remarkable capabilities across a vast array of domains, including the understanding, generation, and translation of natural language, and even tasks that extend beyond language processing. In this report, we delve into the performance of LLMs within the context of scientific discovery, focusing on GPT-4, the state-of-the-art language model. Our investigation spans a diverse range of scientific areas encompassing drug discovery, biology, computational chemistry (density functional theory (DFT) and molecular dynamics (MD)), materials design, and partial differential equations (PDE). Evaluating GPT-4 on scientific tasks is crucial for uncovering its potential across various research domains, validating its domain-specific expertise, accelerating scientific progress, optimizing resource allocation, guiding future model development, and fostering interdisciplinary research. Our exploration methodology primarily consists of expert-driven case assessments, which offer qualitative insights into the model's comprehension of intricate scientific concepts and relationships, and occasionally benchmark testing, which quantitatively evaluates the model's capacity to solve well-defined domain-specific problems. Our preliminary exploration indicates that GPT-4 exhibits promising potential for a variety of scientific applications, demonstrating its aptitude for handling complex problem-solving and knowledge integration tasks. Broadly speaking, we evaluate GPT-4's knowledge base, scientific understanding, scientific numerical calculation abilities, and various scientific prediction capabilities.

Enhancing Code Generation for Low-Resource Languages: No Silver Bullet

The advent of Large Language Models (LLMs) has significantly advanced the field of automated code generation. LLMs rely on large and diverse datasets to learn syntax, semantics, and usage patterns of programming languages. For low-resource languages (i.e., niche programming languages characterized by the scarcity of training data), the limited availability of such data hampers the models' ability to generalize effectively, resulting in poorer code generation performance as compared to high-resource languages. For this reason, there is a quest for techniques able to close this performance gap. We present an empirical study investigating the effectiveness of several approaches for boosting LLMs' performance on low-resource languages, namely: (i) a classic fine-tuning, which is however capped in size by the scarcity of training data; (ii) three variants of in-context learning, with prompts crafted to provide the LLM with additional information about the low-resource language (e.g., few-shot examples showcasing features of the targeted language); and (iii) a pre-training objective teaching the model how to translate between high- and low-resource languages. The context of our study are two low-resource languages (R and Racket) and six LLMs having different architectures and sizes. Our findings reveal that a fine-tuning is usually the best choice for smaller LLMs, possibly due to the fact that even a small dataset is sufficient to train their limited number of parameters. With the increase in size of the models, in-context learning becomes more and more effective, representing a safe and cheap bet (i.e., it always helps, but with different magnitudes). Differently, very large LLMs may deteriorate their performance on low-resource languages when fine-tuning is performed, possibly due to the lack of enough data needed to effectively update their weights.

Efficient and Green Large Language Models for Software Engineering: Vision and the Road Ahead

Large Language Models (LLMs) have recently shown remarkable capabilities in various software engineering tasks, spurring the rapid growth of the Large Language Models for Software Engineering (LLM4SE) area. However, limited attention has been paid to developing efficient LLM4SE techniques that demand minimal computational cost, time, and memory resources, as well as green LLM4SE solutions that reduce energy consumption, water usage, and carbon emissions. This paper aims to redirect the focus of the research community towards the efficiency and greenness of LLM4SE, while also sharing potential research directions to achieve this goal. It commences with a brief overview of the significance of LLM4SE and highlights the need for efficient and green LLM4SE solutions. Subsequently, the paper presents a vision for a future where efficient and green LLM4SE revolutionizes the LLM-based software engineering tool landscape, benefiting various stakeholders, including industry, individual practitioners, and society. The paper then delineates a roadmap for future research, outlining specific research paths and potential solutions for the research community to pursue. While not intended to be a definitive guide, the paper aims to inspire further progress, with the ultimate goal of establishing efficient and green LLM4SE as a central element in the future of software engineering.

Exploring the sustainable scaling of AI dilemma: A projective study of corporations' AI environmental impacts

The rapid growth of artificial intelligence (AI), particularly Large Language Models (LLMs), has raised concerns regarding its global environmental impact that extends beyond greenhouse gas emissions to include consideration of hardware fabrication and end-of-life processes. The opacity from major providers hinders companies' abilities to evaluate their AI-related environmental impacts and achieve net-zero targets. In this paper, we propose a methodology to estimate the environmental impact of a company's AI portfolio, providing actionable insights without necessitating extensive AI and Life-Cycle Assessment (LCA) expertise. Results confirm that large generative AI models consume up to 4600x more energy than traditional models. Our modelling approach, which accounts for increased AI usage, hardware computing efficiency, and changes in electricity mix in line with IPCC scenarios, forecasts AI electricity use up to 2030. Under a high adoption scenario, driven by widespread Generative AI and agents adoption associated to increasingly complex models and frameworks, AI electricity use is projected to rise by a factor of 24.4. Mitigating the environmental impact of Generative AI by 2030 requires coordinated efforts across the AI value chain. Isolated measures in hardware efficiency, model efficiency, or grid improvements alone are insufficient. We advocate for standardized environmental assessment frameworks, greater transparency from the all actors of the value chain and the introduction of a "Return on Environment" metric to align AI development with net-zero goals.

SciPIP: An LLM-based Scientific Paper Idea Proposer

The exponential growth of knowledge and the increasing complexity of interdisciplinary research pose significant challenges for researchers, including information overload and difficulties in exploring novel ideas. The advancements in large language models (LLMs), such as GPT-4, have shown great potential in enhancing idea proposals, but how to effectively utilize large models for reasonable idea proposal has not been thoroughly explored. This paper proposes a scientific paper idea proposer (SciPIP). Based on a user-provided research background, SciPIP retrieves helpful papers from a literature database while leveraging the capabilities of LLMs to generate more novel and feasible ideas. To this end, 1) we construct a literature retrieval database, extracting lots of papers' multi-dimension information for fast access. Then, a literature retrieval method based on semantics, entity, and citation co-occurrences is proposed to search relevant literature from multiple aspects based on the user-provided background. 2) After literature retrieval, we introduce dual-path idea proposal strategies, where one path infers solutions from the retrieved literature and the other path generates original ideas through model brainstorming. We then combine the two to achieve a good balance between feasibility and originality. Through extensive experiments on the natural language processing (NLP) field, we demonstrate that SciPIP can retrieve citations similar to those of existing top conference papers and generate many ideas consistent with them. Additionally, we evaluate the originality of other ideas generated by SciPIP using large language models, further validating the effectiveness of our proposed method. The code and the database are released at https://github.com/cheerss/SciPIP.

Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study on Telematics Data with ChatGPT

This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT. Synthetic datasets present an effective solution to challenges pertaining to data privacy, scarcity, and control over variables - characteristics that make them particularly valuable for research pursuits. The utility of these datasets, however, largely depends on their quality, measured through the lenses of diversity, relevance, and coherence. To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset. The experiment involved an iterative guidance of ChatGPT, progressively refining prompts and culminating in the creation of a comprehensive dataset for a hypothetical urban planning scenario in Columbus, Ohio. Upon generation, the synthetic dataset was subjected to an evaluation, focusing on the previously identified quality parameters and employing descriptive statistics and visualization techniques for a thorough analysis. Despite synthetic datasets not serving as perfect replacements for actual world data, their potential in specific use-cases, when executed with precision, is significant. This research underscores the potential of AI models like ChatGPT in enhancing data availability for complex sectors like telematics, thus paving the way for a myriad of new research opportunities.

Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations

There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.

Projections of Earth's Technosphere: Luminosity and Mass as Limits to Growth

Earth remains the only known example of a planet with technology, and future projections of Earth's trajectory provide a basis and motivation for approaching the search for extraterrestrial technospheres. Conventional approaches toward projecting Earth's technosphere include applications of the Kardashev scale, which suggest the possibility that energy-intensive civilizations may expand to harness the entire energy output available to their planet, host star, or even the entire galaxy. In this study, we argue that the Kardashev scale is better understood as a "luminosity limit" that describes the maximum capacity for a civilization to harvest luminous stellar energy across a given spatial domain, and we note that thermodynamic efficiency will always keep a luminosity-limited technosphere from actually reaching this theoretical limit. We suggest the possibility that an advanced technosphere might evolve beyond this luminosity limit to draw its energy directly from harvesting stellar mass, and we also discuss possible trajectories that could exist between Earth today and such hypothetical "stellivores." We develop a framework to describe trajectories for long-lived technospheres that optimize their growth strategies between exploration and exploitation, unlike Earth today. We note that analyses of compact accreting stars could provide ways to test the stellivore hypothesis, and we more broadly suggest an expansion of technosignature search strategies beyond those that reside exactly at the luminosity limit.

Prompting Frameworks for Large Language Models: A Survey

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at https://github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

JaxMARL: Multi-Agent RL Environments in JAX

Benchmarks play an important role in the development of machine learning algorithms. For example, research in reinforcement learning (RL) has been heavily influenced by available environments and benchmarks. However, RL environments are traditionally run on the CPU, limiting their scalability with typical academic compute. Recent advancements in JAX have enabled the wider use of hardware acceleration to overcome these computational hurdles, enabling massively parallel RL training pipelines and environments. This is particularly useful for multi-agent reinforcement learning (MARL) research. First of all, multiple agents must be considered at each environment step, adding computational burden, and secondly, the sample complexity is increased due to non-stationarity, decentralised partial observability, or other MARL challenges. In this paper, we present JaxMARL, the first open-source code base that combines ease-of-use with GPU enabled efficiency, and supports a large number of commonly used MARL environments as well as popular baseline algorithms. When considering wall clock time, our experiments show that per-run our JAX-based training pipeline is up to 12500x faster than existing approaches. This enables efficient and thorough evaluations, with the potential to alleviate the evaluation crisis of the field. We also introduce and benchmark SMAX, a vectorised, simplified version of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft II game engine. This not only enables GPU acceleration, but also provides a more flexible MARL environment, unlocking the potential for self-play, meta-learning, and other future applications in MARL. We provide code at https://github.com/flairox/jaxmarl.

Improving Interpersonal Communication by Simulating Audiences with Language Models

How do we communicate with others to achieve our goals? We use our prior experience or advice from others, or construct a candidate utterance by predicting how it will be received. However, our experiences are limited and biased, and reasoning about potential outcomes can be difficult and cognitively challenging. In this paper, we explore how we can leverage Large Language Model (LLM) simulations to help us communicate better. We propose the Explore-Generate-Simulate (EGS) framework, which takes as input any scenario where an individual is communicating to an audience with a goal they want to achieve. EGS (1) explores the solution space by producing a diverse set of advice relevant to the scenario, (2) generates communication candidates conditioned on subsets of the advice, and (3) simulates the reactions from various audiences to determine both the best candidate and advice to use. We evaluate the framework on eight scenarios spanning the ten fundamental processes of interpersonal communication. For each scenario, we collect a dataset of human evaluations across candidates and baselines, and showcase that our framework's chosen candidate is preferred over popular generation mechanisms including Chain-of-Thought. We also find that audience simulations achieve reasonably high agreement with human raters across 5 of the 8 scenarios. Finally, we demonstrate the generality of our framework by applying it to real-world scenarios described by users on web forums. Through evaluations and demonstrations, we show that EGS enhances the effectiveness and outcomes of goal-oriented communication across a variety of situations, thus opening up new possibilities for the application of large language models in revolutionizing communication and decision-making processes.

Sparks of Artificial General Intelligence: Early experiments with GPT-4

Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs) that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. The latest model developed by OpenAI, GPT-4, was trained using an unprecedented scale of compute and data. In this paper, we report on our investigation of an early version of GPT-4, when it was still in active development by OpenAI. We contend that (this early version of) GPT-4 is part of a new cohort of LLMs (along with ChatGPT and Google's PaLM for example) that exhibit more general intelligence than previous AI models. We discuss the rising capabilities and implications of these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any special prompting. Moreover, in all of these tasks, GPT-4's performance is strikingly close to human-level performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of GPT-4's capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond next-word prediction. We conclude with reflections on societal influences of the recent technological leap and future research directions.

SEED-Bench-2-Plus: Benchmarking Multimodal Large Language Models with Text-Rich Visual Comprehension

Comprehending text-rich visual content is paramount for the practical application of Multimodal Large Language Models (MLLMs), since text-rich scenarios are ubiquitous in the real world, which are characterized by the presence of extensive texts embedded within images. Recently, the advent of MLLMs with impressive versatility has raised the bar for what we can expect from MLLMs. However, their proficiency in text-rich scenarios has yet to be comprehensively and objectively assessed, since current MLLM benchmarks primarily focus on evaluating general visual comprehension. In this work, we introduce SEED-Bench-2-Plus, a benchmark specifically designed for evaluating text-rich visual comprehension of MLLMs. Our benchmark comprises 2.3K multiple-choice questions with precise human annotations, spanning three broad categories: Charts, Maps, and Webs, each of which covers a wide spectrum of text-rich scenarios in the real world. These categories, due to their inherent complexity and diversity, effectively simulate real-world text-rich environments. We further conduct a thorough evaluation involving 34 prominent MLLMs (including GPT-4V, Gemini-Pro-Vision and Claude-3-Opus) and emphasize the current limitations of MLLMs in text-rich visual comprehension. We hope that our work can serve as a valuable addition to existing MLLM benchmarks, providing insightful observations and inspiring further research in the area of text-rich visual comprehension with MLLMs. The dataset and evaluation code can be accessed at https://github.com/AILab-CVC/SEED-Bench.

MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains

Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including teal{Tool-use}, teal{Directed Acyclic Graph (DAG) QA}, teal{Data Science and Machine Learning coding}, teal{Contest-level programming} and teal{Mathematics}, and covers five essential capabilities: orange{Understanding}, orange{Reasoning}, orange{Planning}, orange{Problem-solving}, and orange{Self-correction}. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at https://github.com/apple/axlearn/docs/research/mmau.

BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bio-inspired Materials

The study of biological materials and bio-inspired materials science is well established; however, surprisingly little knowledge has been systematically translated to engineering solutions. To accelerate discovery and guide insights, an open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported. The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model has proven that it is able to accurately recall information about biological materials and is further enhanced with enhanced reasoning ability, as well as with retrieval-augmented generation to incorporate new data during generation that can also help to traceback sources, update the knowledge base, and connect knowledge domains. BioinspiredLLM also has been shown to develop sound hypotheses regarding biological materials design and remarkably so for materials that have never been explicitly studied before. Lastly, the model showed impressive promise in collaborating with other generative artificial intelligence models in a workflow that can reshape the traditional materials design process. This collaborative generative artificial intelligence method can stimulate and enhance bio-inspired materials design workflows. Biological materials are at a critical intersection of multiple scientific fields and models like BioinspiredLLM help to connect knowledge domains.

Cognitively Inspired Energy-Based World Models

One of the predominant methods for training world models is autoregressive prediction in the output space of the next element of a sequence. In Natural Language Processing (NLP), this takes the form of Large Language Models (LLMs) predicting the next token; in Computer Vision (CV), this takes the form of autoregressive models predicting the next frame/token/pixel. However, this approach differs from human cognition in several respects. First, human predictions about the future actively influence internal cognitive processes. Second, humans naturally evaluate the plausibility of predictions regarding future states. Based on this capability, and third, by assessing when predictions are sufficient, humans allocate a dynamic amount of time to make a prediction. This adaptive process is analogous to System 2 thinking in psychology. All these capabilities are fundamental to the success of humans at high-level reasoning and planning. Therefore, to address the limitations of traditional autoregressive models lacking these human-like capabilities, we introduce Energy-Based World Models (EBWM). EBWM involves training an Energy-Based Model (EBM) to predict the compatibility of a given context and a predicted future state. In doing so, EBWM enables models to achieve all three facets of human cognition described. Moreover, we developed a variant of the traditional autoregressive transformer tailored for Energy-Based models, termed the Energy-Based Transformer (EBT). Our results demonstrate that EBWM scales better with data and GPU Hours than traditional autoregressive transformers in CV, and that EBWM offers promising early scaling in NLP. Consequently, this approach offers an exciting path toward training future models capable of System 2 thinking and intelligently searching across state spaces.

RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.

Rethinking Scale: The Efficacy of Fine-Tuned Open-Source LLMs in Large-Scale Reproducible Social Science Research

Large Language Models (LLMs) are distinguished by their architecture, which dictates their parameter size and performance capabilities. Social scientists have increasingly adopted LLMs for text classification tasks, which are difficult to scale with human coders. While very large, closed-source models often deliver superior performance, their use presents significant risks. These include lack of transparency, potential exposure of sensitive data, challenges to replicability, and dependence on proprietary systems. Additionally, their high costs make them impractical for large-scale research projects. In contrast, open-source models, although available in various sizes, may underperform compared to commercial alternatives if used without further fine-tuning. However, open-source models offer distinct advantages: they can be run locally (ensuring data privacy), fine-tuned for specific tasks, shared within the research community, and integrated into reproducible workflows. This study demonstrates that small, fine-tuned open-source LLMs can achieve equal or superior performance to models such as ChatGPT-4. We further explore the relationship between training set size and fine-tuning efficacy in open-source models. Finally, we propose a hybrid workflow that leverages the strengths of both open and closed models, offering a balanced approach to performance, transparency, and reproducibility.

ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning

Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) community has taken an increased interest in supporting climate scientists' efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a "super emulator" can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale.

From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents

Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}.

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature

We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks covering five essential scientific literature understanding capabilities: information extraction, summarization, question answering, claim verification, and classification. SciRIFF demonstrations are notable for their long input contexts, detailed task specifications, and complex structured outputs. While instruction-following resources are available in specific domains such as clinical medicine and chemistry, SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields. To demonstrate the utility of SciRIFF, we develop a sample-efficient strategy to adapt a general instruction-following model for science by performing additional finetuning on a mix of general-domain and SciRIFF demonstrations. In evaluations on nine held-out scientific tasks, our model -- called SciTulu -- improves over a strong LLM baseline by 28.1% and 6.5% at the 7B and 70B scales respectively, while maintaining general instruction-following performance within 2% of the baseline. We are optimistic that SciRIFF will facilitate the development and evaluation of LLMs to help researchers navigate the ever-growing body of scientific literature. We release our dataset, model checkpoints, and data processing and evaluation code to enable further research.

Examining User-Friendly and Open-Sourced Large GPT Models: A Survey on Language, Multimodal, and Scientific GPT Models

Generative pre-trained transformer (GPT) models have revolutionized the field of natural language processing (NLP) with remarkable performance in various tasks and also extend their power to multimodal domains. Despite their success, large GPT models like GPT-4 face inherent limitations such as considerable size, high computational requirements, complex deployment processes, and closed development loops. These constraints restrict their widespread adoption and raise concerns regarding their responsible development and usage. The need for user-friendly, relatively small, and open-sourced alternative GPT models arises from the desire to overcome these limitations while retaining high performance. In this survey paper, we provide an examination of alternative open-sourced models of large GPTs, focusing on user-friendly and relatively small models that facilitate easier deployment and accessibility. Through this extensive survey, we aim to equip researchers, practitioners, and enthusiasts with a thorough understanding of user-friendly and relatively small open-sourced models of large GPTs, their current state, challenges, and future research directions, inspiring the development of more efficient, accessible, and versatile GPT models that cater to the broader scientific community and advance the field of general artificial intelligence. The source contents are continuously updating in https://github.com/GPT-Alternatives/gpt_alternatives.

O1 Replication Journey: A Strategic Progress Report -- Part 1

This paper introduces a pioneering approach to artificial intelligence research, embodied in our O1 Replication Journey. In response to the announcement of OpenAI's groundbreaking O1 model, we embark on a transparent, real-time exploration to replicate its capabilities while reimagining the process of conducting and communicating AI research. Our methodology addresses critical challenges in modern AI research, including the insularity of prolonged team-based projects, delayed information sharing, and the lack of recognition for diverse contributions. By providing comprehensive, real-time documentation of our replication efforts, including both successes and failures, we aim to foster open science, accelerate collective advancement, and lay the groundwork for AI-driven scientific discovery. Our research progress report diverges significantly from traditional research papers, offering continuous updates, full process transparency, and active community engagement throughout the research journey. Technologically, we proposed the journey learning paradigm, which encourages models to learn not just shortcuts, but the complete exploration process, including trial and error, reflection, and backtracking. With only 327 training samples and without any additional tricks, journey learning outperformed conventional supervised learning by over 8\% on the MATH dataset, demonstrating its extremely powerful potential. We believe this to be the most crucial component of O1 technology that we have successfully decoded. We share valuable resources including technical hypotheses and insights, cognitive exploration maps, custom-developed tools, etc at https://github.com/GAIR-NLP/O1-Journey.

RFRL Gym: A Reinforcement Learning Testbed for Cognitive Radio Applications

Radio Frequency Reinforcement Learning (RFRL) is anticipated to be a widely applicable technology in the next generation of wireless communication systems, particularly 6G and next-gen military communications. Given this, our research is focused on developing a tool to promote the development of RFRL techniques that leverage spectrum sensing. In particular, the tool was designed to address two cognitive radio applications, specifically dynamic spectrum access and jamming. In order to train and test reinforcement learning (RL) algorithms for these applications, a simulation environment is necessary to simulate the conditions that an agent will encounter within the Radio Frequency (RF) spectrum. In this paper, such an environment has been developed, herein referred to as the RFRL Gym. Through the RFRL Gym, users can design their own scenarios to model what an RL agent may encounter within the RF spectrum as well as experiment with different spectrum sensing techniques. Additionally, the RFRL Gym is a subclass of OpenAI gym, enabling the use of third-party ML/RL Libraries. We plan to open-source this codebase to enable other researchers to utilize the RFRL Gym to test their own scenarios and RL algorithms, ultimately leading to the advancement of RL research in the wireless communications domain. This paper describes in further detail the components of the Gym, results from example scenarios, and plans for future additions. Index Terms-machine learning, reinforcement learning, wireless communications, dynamic spectrum access, OpenAI gym

CORAG: A Cost-Constrained Retrieval Optimization System for Retrieval-Augmented Generation

Large Language Models (LLMs) have demonstrated remarkable generation capabilities but often struggle to access up-to-date information, which can lead to hallucinations. Retrieval-Augmented Generation (RAG) addresses this issue by incorporating knowledge from external databases, enabling more accurate and relevant responses. Due to the context window constraints of LLMs, it is impractical to input the entire external database context directly into the model. Instead, only the most relevant information, referred to as chunks, is selectively retrieved. However, current RAG research faces three key challenges. First, existing solutions often select each chunk independently, overlooking potential correlations among them. Second, in practice the utility of chunks is non-monotonic, meaning that adding more chunks can decrease overall utility. Traditional methods emphasize maximizing the number of included chunks, which can inadvertently compromise performance. Third, each type of user query possesses unique characteristics that require tailored handling, an aspect that current approaches do not fully consider. To overcome these challenges, we propose a cost constrained retrieval optimization system CORAG for retrieval-augmented generation. We employ a Monte Carlo Tree Search (MCTS) based policy framework to find optimal chunk combinations sequentially, allowing for a comprehensive consideration of correlations among chunks. Additionally, rather than viewing budget exhaustion as a termination condition, we integrate budget constraints into the optimization of chunk combinations, effectively addressing the non-monotonicity of chunk utility.

STEER-ME: Assessing the Microeconomic Reasoning of Large Language Models

How should one judge whether a given large language model (LLM) can reliably perform economic reasoning? Most existing LLM benchmarks focus on specific applications and fail to present the model with a rich variety of economic tasks. A notable exception is Raman et al. [2024], who offer an approach for comprehensively benchmarking strategic decision-making; however, this approach fails to address the non-strategic settings prevalent in microeconomics, such as supply-and-demand analysis. We address this gap by taxonomizing microeconomic reasoning into 58 distinct elements, focusing on the logic of supply and demand, each grounded in up to 10 distinct domains, 5 perspectives, and 3 types. The generation of benchmark data across this combinatorial space is powered by a novel LLM-assisted data generation protocol that we dub auto-STEER, which generates a set of questions by adapting handwritten templates to target new domains and perspectives. Because it offers an automated way of generating fresh questions, auto-STEER mitigates the risk that LLMs will be trained to over-fit evaluation benchmarks; we thus hope that it will serve as a useful tool both for evaluating and fine-tuning models for years to come. We demonstrate the usefulness of our benchmark via a case study on 27 LLMs, ranging from small open-source models to the current state of the art. We examined each model's ability to solve microeconomic problems across our whole taxonomy and present the results across a range of prompting strategies and scoring metrics.

Chain of Ideas: Revolutionizing Research in Novel Idea Development with LLM Agents

Effective research ideation is a critical step for scientific research. However, the exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions. Recent developments in large language models~(LLMs) suggest a promising avenue for automating the generation of novel research ideas. However, existing methods for idea generation either trivially prompt LLMs or directly expose LLMs to extensive literature without indicating useful information. Inspired by the research process of human researchers, we propose a Chain-of-Ideas~(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization facilitates LLMs to capture the current advancements in research, thereby enhancing their ideation capabilities. Furthermore, we propose Idea Arena, an evaluation protocol that can comprehensively evaluate idea generation methods from different perspectives, aligning closely with the preferences of human researchers. Experimental results indicate that the CoI agent consistently outperforms other methods and shows comparable quality as humans in research idea generation. Moreover, our CoI agent is budget-friendly, with a minimum cost of \$0.50 to generate a candidate idea and its corresponding experimental design.

AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap

The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research.

Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview

The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them.

A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics

The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval.

CooK: Empowering General-Purpose Language Models with Modular and Collaborative Knowledge

Large language models (LLMs) are increasingly adopted for knowledge-intensive tasks and contexts. Existing approaches improve the knowledge capabilities of general-purpose LLMs through retrieval or generated knowledge prompting, but they fall short of reflecting two key properties of knowledge-rich models: knowledge should be modular, ever-growing, sourced from diverse domains; knowledge acquisition and production should be a collaborative process, where diverse stakeholders contribute new information. To this end, we propose CooK, a novel framework to empower general-purpose large language models with modular and collaboratively sourced knowledge. We first introduce specialized language models, autoregressive models trained on corpora from a wide range of domains and sources. These specialized LMs serve as parametric knowledge repositories that are later prompted to generate background knowledge for general-purpose LLMs. We then propose three knowledge filters to dynamically select and retain information in generated documents by controlling for relevance, brevity, and factuality. Finally, we propose bottom-up and top-down knowledge integration approaches to augment general-purpose LLMs with the curated (relevant, factual) knowledge from community-driven specialized LMs that enable multi-domain knowledge synthesis and on-demand knowledge requests. Through extensive experiments, we demonstrate that CooK achieves state-of-the-art performance on six benchmark datasets. Our results highlight the potential of enriching general-purpose LLMs with evolving and modular knowledge -- relevant knowledge that can be continuously updated through the collective efforts of the research community.

Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts

In recent years, large language models (LLMs) have made remarkable achievements in various domains. However, the untimeliness and cost of knowledge updates coupled with hallucination issues of LLMs have curtailed their applications in knowledge intensive tasks, where retrieval augmented generation (RAG) can be of help. Nevertheless, existing retrieval augmented models typically use similarity as a bridge between queries and documents and follow a retrieve then read procedure. In this work, we argue that similarity is not always the panacea and totally relying on similarity would sometimes degrade the performance of retrieval augmented generation. To this end, we propose MetRag, a Multi layEred Thoughts enhanced Retrieval Augmented Generation framework. To begin with, beyond existing similarity oriented thought, we embrace a small scale utility model that draws supervision from an LLM for utility oriented thought and further come up with a smarter model by comprehensively combining the similarity and utility oriented thoughts. Furthermore, given the fact that the retrieved document set tends to be huge and using them in isolation makes it difficult to capture the commonalities and characteristics among them, we propose to make an LLM as a task adaptive summarizer to endow retrieval augmented generation with compactness-oriented thought. Finally, with multi layered thoughts from the precedent stages, an LLM is called for knowledge augmented generation. Extensive experiments on knowledge-intensive tasks have demonstrated the superiority of MetRag.

TMGBench: A Systematic Game Benchmark for Evaluating Strategic Reasoning Abilities of LLMs

The rapid advancement of large language models (LLMs) has accelerated their application in reasoning, with strategic reasoning drawing increasing attention. To evaluate LLMs' strategic reasoning capabilities, game theory, with its concise structure, has become a preferred approach. However, current research focuses on a limited selection of games, resulting in low coverage. Classic game scenarios risk data leakage, and existing benchmarks often lack extensibility, making them inadequate for evaluating state-of-the-art models. To address these challenges, we propose TMGBench, a benchmark with comprehensive game type coverage, novel scenarios, and flexible organization. Specifically, we incorporate all 144 game types summarized by the Robinson-Goforth topology of 2x2 games, constructed as classic games. We also employ synthetic data generation to create diverse, higher-quality scenarios through topic guidance and human inspection, referred to as story-based games. Lastly, we provide a sustainable framework for increasingly powerful LLMs by treating these games as atomic units and organizing them into more complex forms via sequential, parallel, and nested structures. Our comprehensive evaluation of mainstream LLMs covers tests on rational reasoning, robustness, Theory-of-Mind (ToM), and reasoning in complex forms. Results reveal flaws in accuracy, consistency, and varying mastery of ToM. Additionally, o1-mini, OpenAI's latest reasoning model, achieved accuracy rates of 66.6%, 60.0%, and 70.0% on sequential, parallel, and nested games, highlighting TMGBench's challenges.

SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain

Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.

Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications

This technical report presents Prithvi-EO-2.0, a new geospatial foundation model that offers significant improvements over its predecessor, Prithvi-EO-1.0. Trained on 4.2M global time series samples from NASA's Harmonized Landsat and Sentinel-2 data archive at 30m resolution, the new 300M and 600M parameter models incorporate temporal and location embeddings for enhanced performance across various geospatial tasks. Through extensive benchmarking with GEO-Bench, the 600M version outperforms the previous Prithvi-EO model by 8\% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m). The results demonstrate the versatility of the model in both classical earth observation and high-resolution applications. Early involvement of end-users and subject matter experts (SMEs) are among the key factors that contributed to the project's success. In particular, SME involvement allowed for constant feedback on model and dataset design, as well as successful customization for diverse SME-led applications in disaster response, land use and crop mapping, and ecosystem dynamics monitoring. Prithvi-EO-2.0 is available on Hugging Face and IBM terratorch, with additional resources on GitHub. The project exemplifies the Trusted Open Science approach embraced by all involved organizations.

Joint Reasoning on Hybrid-knowledge sources for Task-Oriented Dialog

Traditional systems designed for task oriented dialog utilize knowledge present only in structured knowledge sources to generate responses. However, relevant information required to generate responses may also reside in unstructured sources, such as documents. Recent state of the art models such as HyKnow and SeKnow aimed at overcoming these challenges make limiting assumptions about the knowledge sources. For instance, these systems assume that certain types of information, such as a phone number, is always present in a structured knowledge base (KB) while information about aspects such as entrance ticket prices, would always be available in documents. In this paper, we create a modified version of the MutliWOZ-based dataset prepared by SeKnow to demonstrate how current methods have significant degradation in performance when strict assumptions about the source of information are removed. Then, in line with recent work exploiting pre-trained language models, we fine-tune a BART based model using prompts for the tasks of querying knowledge sources, as well as, for response generation, without making assumptions about the information present in each knowledge source. Through a series of experiments, we demonstrate that our model is robust to perturbations to knowledge modality (source of information), and that it can fuse information from structured as well as unstructured knowledge to generate responses.

MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities

For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.

ClimateLearn: Benchmarking Machine Learning for Weather and Climate Modeling

Modeling weather and climate is an essential endeavor to understand the near- and long-term impacts of climate change, as well as inform technology and policymaking for adaptation and mitigation efforts. In recent years, there has been a surging interest in applying data-driven methods based on machine learning for solving core problems such as weather forecasting and climate downscaling. Despite promising results, much of this progress has been impaired due to the lack of large-scale, open-source efforts for reproducibility, resulting in the use of inconsistent or underspecified datasets, training setups, and evaluations by both domain scientists and artificial intelligence researchers. We introduce ClimateLearn, an open-source PyTorch library that vastly simplifies the training and evaluation of machine learning models for data-driven climate science. ClimateLearn consists of holistic pipelines for dataset processing (e.g., ERA5, CMIP6, PRISM), implementation of state-of-the-art deep learning models (e.g., Transformers, ResNets), and quantitative and qualitative evaluation for standard weather and climate modeling tasks. We supplement these functionalities with extensive documentation, contribution guides, and quickstart tutorials to expand access and promote community growth. We have also performed comprehensive forecasting and downscaling experiments to showcase the capabilities and key features of our library. To our knowledge, ClimateLearn is the first large-scale, open-source effort for bridging research in weather and climate modeling with modern machine learning systems. Our library is available publicly at https://github.com/aditya-grover/climate-learn.

Datasets for Large Language Models: A Comprehensive Survey

This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.

Curiosity-driven Red-teaming for Large Language Models

Large language models (LLMs) hold great potential for many natural language applications but risk generating incorrect or toxic content. To probe when an LLM generates unwanted content, the current paradigm is to recruit a red team of human testers to design input prompts (i.e., test cases) that elicit undesirable responses from LLMs. However, relying solely on human testers is expensive and time-consuming. Recent works automate red teaming by training a separate red team LLM with reinforcement learning (RL) to generate test cases that maximize the chance of eliciting undesirable responses from the target LLM. However, current RL methods are only able to generate a small number of effective test cases resulting in a low coverage of the span of prompts that elicit undesirable responses from the target LLM. To overcome this limitation, we draw a connection between the problem of increasing the coverage of generated test cases and the well-studied approach of curiosity-driven exploration that optimizes for novelty. Our method of curiosity-driven red teaming (CRT) achieves greater coverage of test cases while mantaining or increasing their effectiveness compared to existing methods. Our method, CRT successfully provokes toxic responses from LLaMA2 model that has been heavily fine-tuned using human preferences to avoid toxic outputs. Code is available at https://github.com/Improbable-AI/curiosity_redteam

LLM Tree Search

This project aims to investigate a novel sequence generation method inspired by the AlphaGo paradigm, adapting it for use with large language models (LLMs). The proposed approach involves creating search trees of different possible completions and evaluating these completions based on model confidence. By considering various paths in the search tree and scoring them according to the model's confidence in each completion, we can generate diverse and high-quality sequences. This research explores the implementation of this paradigm by using confidence as a proxy for response quality akin to beam search vijayakumar2016diverse. The primary goal of this paper is to outline the paradigm and demonstrate its potential, rather than focusing on achieving perfect results. The paper will outline the reasons why we believe this paradigm has the potential to improve LLMs in the following manners: 1) increase output quality, 2) decrease errors, 3) eliminate or reduce the compound error problems, 4) generate diverse and creative completions, 5) allow for iterative problem-solving, and 6) self-training. We expect this approach to yield a set of diverse and coherent sequences, offering insights into balancing exploration and exploitation in sequence generation. Potential applications include creative text generation tasks, such as storytelling and content creation, as well as other natural language processing domains, like machine translation and automated summarization. The goal is that the model will be far more effective as it will be able to consider many possible variations allowing it to find the ideal completion. This research aims to contribute to the understanding of effective search strategies in sequence generation and their impact on generating high-quality, varied textual outputs.

TRAD: Enhancing LLM Agents with Step-Wise Thought Retrieval and Aligned Decision

Numerous large language model (LLM) agents have been built for different tasks like web navigation and online shopping due to LLM's wide knowledge and text-understanding ability. Among these works, many of them utilize in-context examples to achieve generalization without the need for fine-tuning, while few of them have considered the problem of how to select and effectively utilize these examples. Recently, methods based on trajectory-level retrieval with task meta-data and using trajectories as in-context examples have been proposed to improve the agent's overall performance in some sequential decision making tasks. However, these methods can be problematic due to plausible examples retrieved without task-specific state transition dynamics and long input with plenty of irrelevant context. In this paper, we propose a novel framework (TRAD) to address these issues. TRAD first conducts Thought Retrieval, achieving step-level demonstration selection via thought matching, leading to more helpful demonstrations and less irrelevant input noise. Then, TRAD introduces Aligned Decision, complementing retrieved demonstration steps with their previous or subsequent steps, which enables tolerance for imperfect thought and provides a choice for balance between more context and less noise. Extensive experiments on ALFWorld and Mind2Web benchmarks show that TRAD not only outperforms state-of-the-art models but also effectively helps in reducing noise and promoting generalization. Furthermore, TRAD has been deployed in real-world scenarios of a global business insurance company and improves the success rate of robotic process automation.

Eureka: Evaluating and Understanding Large Foundation Models

Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.

Improving Tool Retrieval by Leveraging Large Language Models for Query Generation

Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.

On the Opportunities and Risks of Foundation Models

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

Governance of the AI, by the AI, and for the AI

Over the past half century, there have been several false dawns during which the "arrival" of world-changing artificial intelligence (AI) has been heralded. Tempting fate, the authors believe the age of AI has, indeed, finally arrived. Powerful image generators, such as DALL-E2 and Midjourney have suddenly allowed anyone with access the ability easily to create rich and complex art. In a similar vein, text generators, such as GPT3.5 (including ChatGPT) and BLOOM, allow users to compose detailed written descriptions of many topics of interest. And, it is even possible now for a person without extensive expertise in writing software to use AI to generate code capable of myriad applications. While AI will continue to evolve and improve, probably at a rapid rate, the current state of AI is already ushering in profound changes to many different sectors of society. Every new technology challenges the ability of humanity to govern it wisely. However, governance is usually viewed as both possible and necessary due to the disruption new technology often poses to social structures, industries, the environment, and other important human concerns. In this article, we offer an analysis of a range of interactions between AI and governance, with the hope that wise decisions may be made that maximize benefits and minimize costs. The article addresses two main aspects of this relationship: the governance of AI by humanity, and the governance of humanity by AI. The approach we have taken is itself informed by AI, as this article was written collaboratively by the authors and ChatGPT.

Towards Generalist Robots: A Promising Paradigm via Generative Simulation

This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly using or adapting these models to produce low-level policies and actions, it advocates for a fully automated generative pipeline (termed as generative simulation), which uses these models to generate diversified tasks, scenes and training supervisions at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field.

RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following

Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.

Foundation Models for Decision Making: Problems, Methods, and Opportunities

Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.

Localising In-Domain Adaptation of Transformer-Based Biomedical Language Models

In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.

Augmenting LLMs with Knowledge: A survey on hallucination prevention

Large pre-trained language models have demonstrated their proficiency in storing factual knowledge within their parameters and achieving remarkable results when fine-tuned for downstream natural language processing tasks. Nonetheless, their capacity to access and manipulate knowledge with precision remains constrained, resulting in performance disparities on knowledge-intensive tasks when compared to task-specific architectures. Additionally, the challenges of providing provenance for model decisions and maintaining up-to-date world knowledge persist as open research frontiers. To address these limitations, the integration of pre-trained models with differentiable access mechanisms to explicit non-parametric memory emerges as a promising solution. This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources, including external knowledge bases and search engines. While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules to augment their contextual processing capabilities, departing from the conventional language modeling paradigm. Through an exploration of current advancements in augmenting large language models with knowledge, this work concludes that this emerging research direction holds the potential to address prevalent issues in traditional LMs, such as hallucinations, un-grounded responses, and scalability challenges.

Under the Surface: Tracking the Artifactuality of LLM-Generated Data

This work delves into the expanding role of large language models (LLMs) in generating artificial data. LLMs are increasingly employed to create a variety of outputs, including annotations, preferences, instruction prompts, simulated dialogues, and free text. As these forms of LLM-generated data often intersect in their application, they exert mutual influence on each other and raise significant concerns about the quality and diversity of the artificial data incorporated into training cycles, leading to an artificial data ecosystem. To the best of our knowledge, this is the first study to aggregate various types of LLM-generated text data, from more tightly constrained data like "task labels" to more lightly constrained "free-form text". We then stress test the quality and implications of LLM-generated artificial data, comparing it with human data across various existing benchmarks. Despite artificial data's capability to match human performance, this paper reveals significant hidden disparities, especially in complex tasks where LLMs often miss the nuanced understanding of intrinsic human-generated content. This study critically examines diverse LLM-generated data and emphasizes the need for ethical practices in data creation and when using LLMs. It highlights the LLMs' shortcomings in replicating human traits and behaviors, underscoring the importance of addressing biases and artifacts produced in LLM-generated content for future research and development. All data and code are available on our project page.

InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning

We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community.

Octopus v4: Graph of language models

Language models have been effective in a wide range of applications, yet the most sophisticated models are often proprietary. For example, GPT-4 by OpenAI and various models by Anthropic are expensive and consume substantial energy. In contrast, the open-source community has produced competitive models, like Llama3. Furthermore, niche-specific smaller language models, such as those tailored for legal, medical or financial tasks, have outperformed their proprietary counterparts. This paper introduces a novel approach that employs functional tokens to integrate multiple open-source models, each optimized for particular tasks. Our newly developed Octopus v4 model leverages functional tokens to intelligently direct user queries to the most appropriate vertical model and reformat the query to achieve the best performance. Octopus v4, an evolution of the Octopus v1, v2, and v3 models, excels in selection and parameter understanding and reformatting. Additionally, we explore the use of graph as a versatile data structure that effectively coordinates multiple open-source models by harnessing the capabilities of the Octopus model and functional tokens. Use our open-sourced GitHub (https://www.nexa4ai.com/) to try Octopus v4 models (https://huggingface.co/NexaAIDev/Octopus-v4), and contrite to a larger graph of language models. By activating models less than 10B parameters, we achieved SOTA MMLU score of 74.8 among the same level models.

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.