1 What Looks Good with my Sofa: Multimodal Search Engine for Interior Design In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public. 6 authors · Jul 21, 2017
- StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance . 7 authors · Oct 16, 2024
1 StyleBART: Decorate Pretrained Model with Style Adapters for Unsupervised Stylistic Headline Generation Stylistic headline generation is the task to generate a headline that not only summarizes the content of an article, but also reflects a desired style that attracts users. As style-specific article-headline pairs are scarce, previous researches focus on unsupervised approaches with a standard headline generation dataset and mono-style corpora. In this work, we follow this line and propose StyleBART, an unsupervised approach for stylistic headline generation. Our method decorates the pretrained BART model with adapters that are responsible for different styles and allows the generation of headlines with diverse styles by simply switching the adapters. Different from previous works, StyleBART separates the task of style learning and headline generation, making it possible to freely combine the base model and the style adapters during inference. We further propose an inverse paraphrasing task to enhance the style adapters. Extensive automatic and human evaluations show that StyleBART achieves new state-of-the-art performance in the unsupervised stylistic headline generation task, producing high-quality headlines with the desired style. 5 authors · Oct 26, 2023
- Does It Capture STEL? A Modular, Similarity-based Linguistic Style Evaluation Framework Style is an integral part of natural language. However, evaluation methods for style measures are rare, often task-specific and usually do not control for content. We propose the modular, fine-grained and content-controlled similarity-based STyle EvaLuation framework (STEL) to test the performance of any model that can compare two sentences on style. We illustrate STEL with two general dimensions of style (formal/informal and simple/complex) as well as two specific characteristics of style (contrac'tion and numb3r substitution). We find that BERT-based methods outperform simple versions of commonly used style measures like 3-grams, punctuation frequency and LIWC-based approaches. We invite the addition of further tasks and task instances to STEL and hope to facilitate the improvement of style-sensitive measures. 2 authors · Sep 10, 2021
- A Confederacy of Models: a Comprehensive Evaluation of LLMs on Creative Writing We evaluate a range of recent LLMs on English creative writing, a challenging and complex task that requires imagination, coherence, and style. We use a difficult, open-ended scenario chosen to avoid training data reuse: an epic narration of a single combat between Ignatius J. Reilly, the protagonist of the Pulitzer Prize-winning novel A Confederacy of Dunces (1980), and a pterodactyl, a prehistoric flying reptile. We ask several LLMs and humans to write such a story and conduct a human evalution involving various criteria such as fluency, coherence, originality, humor, and style. Our results show that some state-of-the-art commercial LLMs match or slightly outperform our writers in most dimensions; whereas open-source LLMs lag behind. Humans retain an edge in creativity, while humor shows a binary divide between LLMs that can handle it comparably to humans and those that fail at it. We discuss the implications and limitations of our study and suggest directions for future research. 2 authors · Oct 12, 2023
- Automated Conversion of Music Videos into Lyric Videos Musicians and fans often produce lyric videos, a form of music videos that showcase the song's lyrics, for their favorite songs. However, making such videos can be challenging and time-consuming as the lyrics need to be added in synchrony and visual harmony with the video. Informed by prior work and close examination of existing lyric videos, we propose a set of design guidelines to help creators make such videos. Our guidelines ensure the readability of the lyric text while maintaining a unified focus of attention. We instantiate these guidelines in a fully automated pipeline that converts an input music video into a lyric video. We demonstrate the robustness of our pipeline by generating lyric videos from a diverse range of input sources. A user study shows that lyric videos generated by our pipeline are effective in maintaining text readability and unifying the focus of attention. 6 authors · Aug 28, 2023
1 Multiresolution Textual Inversion We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of S^*(0)" produces the exact object while the prompt "A photo of S^*(0.8)" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion 2 authors · Nov 30, 2022
- WikiHow: A Large Scale Text Summarization Dataset Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it. 2 authors · Oct 18, 2018
- Identifying the style by a qualified reader on a short fragment of generated poetry Style is an important concept in today's challenges in natural language generating. After the success in the field of image style transfer, the task of text style transfer became actual and attractive. Researchers are also interested in the tasks of style reproducing in generation of the poetic text. Evaluation of style reproducing in natural poetry generation remains a problem. I used 3 character-based LSTM-models to work with style reproducing assessment. All three models were trained on the corpus of texts by famous Russian-speaking poets. Samples were shown to the assessors and 4 answer options were offered, the style of which poet this sample reproduces. In addition, the assessors were asked how well they were familiar with the work of the poet they had named. Students studying history of literature were the assessors, 94 answers were received. It has appeared that accuracy of definition of style increases if the assessor can quote the poet by heart. Each model showed at least 0.7 macro-average accuracy. The experiment showed that it is better to involve a professional rather than a naive reader in the evaluation of style in the tasks of poetry generation, while lstm models are good at reproducing the style of Russian poets even on a limited training corpus. 1 authors · Jun 5, 2023
- Investigating Prompt Engineering in Diffusion Models With the spread of the use of Text2Img diffusion models such as DALL-E 2, Imagen, Mid Journey and Stable Diffusion, one challenge that artists face is selecting the right prompts to achieve the desired artistic output. We present techniques for measuring the effect that specific words and phrases in prompts have, and (in the Appendix) present guidance on the selection of prompts to produce desired effects. 2 authors · Nov 21, 2022
15 Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs In human-written articles, we often leverage the subtleties of text style, such as bold and italics, to guide the attention of readers. These textual emphases are vital for the readers to grasp the conveyed information. When interacting with large language models (LLMs), we have a similar need - steering the model to pay closer attention to user-specified information, e.g., an instruction. Existing methods, however, are constrained to process plain text and do not support such a mechanism. This motivates us to introduce PASTA - Post-hoc Attention STeering Approach, a method that allows LLMs to read text with user-specified emphasis marks. To this end, PASTA identifies a small subset of attention heads and applies precise attention reweighting on them, directing the model attention to user-specified parts. Like prompting, PASTA is applied at inference time and does not require changing any model parameters. Experiments demonstrate that PASTA can substantially enhance an LLM's ability to follow user instructions or integrate new knowledge from user inputs, leading to a significant performance improvement on a variety of tasks, e.g., an average accuracy improvement of 22% for LLAMA-7B. Our code is publicly available at https://github.com/QingruZhang/PASTA . 7 authors · Nov 3, 2023 2
- Low-Resource Authorship Style Transfer with In-Context Learning Authorship style transfer involves altering the style of text to match the style of some target author whilst preserving the semantic meaning of the original text. Existing approaches to unsupervised authorship style transfer like STRAP have largely focused on style transfer for target authors with many examples of their writing style through books, speeches, or other published works (Krishna et al., 2020). Due to this high-resource training data requirement (often greater than 100,000 words), these approaches are often only useful for style transfer to the style of published authors, politicians, or other well-known figures and authorship styles. In this paper, we attempt to perform low-resource authorship style transfer, a more challenging class of authorship style transfer where only a limited amount of text in the target author's style may exist. In our experiments, we specifically choose source and target authors from Reddit to perform style transfer over their Reddit posts, limiting ourselves to just 16 posts (on average approx 500 words) of the target author's style. We then propose a method for automatic evaluation on the low-resource authorship style transfer task utilizing authorship and style representation embeddings (Rivera-Soto et al., 2021; Wegmann et al., 2022). We evaluate our style transferred outputs with the proposed automatic evaluation method and find that our method, STYLL, is able to outperform STRAP and a comprehensive set of baselines. 3 authors · Dec 17, 2022
- Dear Sir or Madam, May I introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer Style transfer is the task of automatically transforming a piece of text in one particular style into another. A major barrier to progress in this field has been a lack of training and evaluation datasets, as well as benchmarks and automatic metrics. In this work, we create the largest corpus for a particular stylistic transfer (formality) and show that techniques from the machine translation community can serve as strong baselines for future work. We also discuss challenges of using automatic metrics. 2 authors · Mar 17, 2018
3 Learning Interpretable Style Embeddings via Prompting LLMs Style representation learning builds content-independent representations of author style in text. Stylometry, the analysis of style in text, is often performed by expert forensic linguists and no large dataset of stylometric annotations exists for training. Current style representation learning uses neural methods to disentangle style from content to create style vectors, however, these approaches result in uninterpretable representations, complicating their usage in downstream applications like authorship attribution where auditing and explainability is critical. In this work, we use prompting to perform stylometry on a large number of texts to create a synthetic dataset and train human-interpretable style representations we call LISA embeddings. We release our synthetic stylometry dataset and our interpretable style models as resources. 3 authors · May 22, 2023
- Enhancing Representation Generalization in Authorship Identification Authorship identification ascertains the authorship of texts whose origins remain undisclosed. That authorship identification techniques work as reliably as they do has been attributed to the fact that authorial style is properly captured and represented. Although modern authorship identification methods have evolved significantly over the years and have proven effective in distinguishing authorial styles, the generalization of stylistic features across domains has not been systematically reviewed. The presented work addresses the challenge of enhancing the generalization of stylistic representations in authorship identification, particularly when there are discrepancies between training and testing samples. A comprehensive review of empirical studies was conducted, focusing on various stylistic features and their effectiveness in representing an author's style. The influencing factors such as topic, genre, and register on writing style were also explored, along with strategies to mitigate their impact. While some stylistic features, like character n-grams and function words, have proven to be robust and discriminative, others, such as content words, can introduce biases and hinder cross-domain generalization. Representations learned using deep learning models, especially those incorporating character n-grams and syntactic information, show promise in enhancing representation generalization. The findings underscore the importance of selecting appropriate stylistic features for authorship identification, especially in cross-domain scenarios. The recognition of the strengths and weaknesses of various linguistic features paves the way for more accurate authorship identification in diverse contexts. 1 authors · Sep 30, 2023
- Same Author or Just Same Topic? Towards Content-Independent Style Representations Linguistic style is an integral component of language. Recent advances in the development of style representations have increasingly used training objectives from authorship verification (AV): Do two texts have the same author? The assumption underlying the AV training task (same author approximates same writing style) enables self-supervised and, thus, extensive training. However, a good performance on the AV task does not ensure good "general-purpose" style representations. For example, as the same author might typically write about certain topics, representations trained on AV might also encode content information instead of style alone. We introduce a variation of the AV training task that controls for content using conversation or domain labels. We evaluate whether known style dimensions are represented and preferred over content information through an original variation to the recently proposed STEL framework. We find that representations trained by controlling for conversation are better than representations trained with domain or no content control at representing style independent from content. 3 authors · Apr 11, 2022
6 Panoramic Interests: Stylistic-Content Aware Personalized Headline Generation Personalized news headline generation aims to provide users with attention-grabbing headlines that are tailored to their preferences. Prevailing methods focus on user-oriented content preferences, but most of them overlook the fact that diverse stylistic preferences are integral to users' panoramic interests, leading to suboptimal personalization. In view of this, we propose a novel Stylistic-Content Aware Personalized Headline Generation (SCAPE) framework. SCAPE extracts both content and stylistic features from headlines with the aid of large language model (LLM) collaboration. It further adaptively integrates users' long- and short-term interests through a contrastive learning-based hierarchical fusion network. By incorporating the panoramic interests into the headline generator, SCAPE reflects users' stylistic-content preferences during the generation process. Extensive experiments on the real-world dataset PENS demonstrate the superiority of SCAPE over baselines. 5 authors · Jan 21 2
- NewsEdits 2.0: Learning the Intentions Behind Updating News As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy. 4 authors · Nov 27, 2024
- Does Burrows' Delta really confirm that Rowling and Galbraith are the same author? The stylo package includes a frequency table that can be used to calculate distances between texts and thus independently solve the problem of attribution of The Cuckoo's Calling, a novel that J.K. Rowling said she wrote. However, the set of texts for this table is very vulnerable to criticism. The authors there are not modern, they wrote in a different genre. I set out to test the performance of the method on texts that are more relevant to the research question. 1 authors · Jul 14, 2024
- An Evaluation Framework for Legal Document Summarization A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github. 6 authors · May 17, 2022
- Defending Against Authorship Identification Attacks Authorship identification has proven unsettlingly effective in inferring the identity of the author of an unsigned document, even when sensitive personal information has been carefully omitted. In the digital era, individuals leave a lasting digital footprint through their written content, whether it is posted on social media, stored on their employer's computers, or located elsewhere. When individuals need to communicate publicly yet wish to remain anonymous, there is little available to protect them from unwanted authorship identification. This unprecedented threat to privacy is evident in scenarios such as whistle-blowing. Proposed defenses against authorship identification attacks primarily aim to obfuscate one's writing style, thereby making it unlinkable to their pre-existing writing, while concurrently preserving the original meaning and grammatical integrity. The presented work offers a comprehensive review of the advancements in this research area spanning over the past two decades and beyond. It emphasizes the methodological frameworks of modification and generation-based strategies devised to evade authorship identification attacks, highlighting joint efforts from the differential privacy community. Limitations of current research are discussed, with a spotlight on open challenges and potential research avenues. 1 authors · Oct 2, 2023
- Current Challenges and Visions in Music Recommender Systems Research Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field. 5 authors · Oct 9, 2017
- Best Prompts for Text-to-Image Models and How to Find Them Recent progress in generative models, especially in text-guided diffusion models, has enabled the production of aesthetically-pleasing imagery resembling the works of professional human artists. However, one has to carefully compose the textual description, called the prompt, and augment it with a set of clarifying keywords. Since aesthetics are challenging to evaluate computationally, human feedback is needed to determine the optimal prompt formulation and keyword combination. In this paper, we present a human-in-the-loop approach to learning the most useful combination of prompt keywords using a genetic algorithm. We also show how such an approach can improve the aesthetic appeal of images depicting the same descriptions. 2 authors · Sep 23, 2022
- Subjective Bias in Abstractive Summarization Due to the subjectivity of the summarization, it is a good practice to have more than one gold summary for each training document. However, many modern large-scale abstractive summarization datasets have only one-to-one samples written by different human with different styles. The impact of this phenomenon is understudied. We formulate the differences among possible multiple expressions summarizing the same content as subjective bias and examine the role of this bias in the context of abstractive summarization. In this paper a lightweight and effective method to extract the feature embeddings of subjective styles is proposed. Results of summarization models trained on style-clustered datasets show that there are certain types of styles that lead to better convergence, abstraction and generalization. The reproducible code and generated summaries are available online. 7 authors · Jun 18, 2021
1 SemEval-2020 Task 10: Emphasis Selection for Written Text in Visual Media In this paper, we present the main findings and compare the results of SemEval-2020 Task 10, Emphasis Selection for Written Text in Visual Media. The goal of this shared task is to design automatic methods for emphasis selection, i.e. choosing candidates for emphasis in textual content to enable automated design assistance in authoring. The main focus is on short text instances for social media, with a variety of examples, from social media posts to inspirational quotes. Participants were asked to model emphasis using plain text with no additional context from the user or other design considerations. SemEval-2020 Emphasis Selection shared task attracted 197 participants in the early phase and a total of 31 teams made submissions to this task. The highest-ranked submission achieved 0.823 Matchm score. The analysis of systems submitted to the task indicates that BERT and RoBERTa were the most common choice of pre-trained models used, and part of speech tag (POS) was the most useful feature. Full results can be found on the task's website. 6 authors · Aug 7, 2020
- Learning to Generate Text in Arbitrary Writing Styles Prior work in style-controlled text generation has focused on tasks such as emulating the style of prolific literary authors, producing formal or informal text, and the degree of toxicity of generated text. Plentiful demonstrations of these styles are available, and as a result modern language models are often able to emulate them, either via prompting or discriminative control. However, in applications such as writing assistants, it is desirable for language models to produce text in an author-specific style on the basis of a small writing sample. We find that instruction-tuned language models can struggle to reproduce author-specific style demonstrated in a prompt. Instead, we propose to guide a language model to generate text in a target style using contrastively-trained representations that capture stylometric features. A central challenge in doing so is that an author's writing is characterized by surprising token choices under a generic language model. To reconcile this tension, we combine generative re-scoring to achieve an author-specific model, with discriminative control to ensure style consistency at the sequence-level. The combination of these approaches is found to be particularly effective at adhering to an author-specific style in a variety of conditions, including unconditional generation and style transfer, and is applicable to any underlying language model without requiring fine-tuning. 4 authors · Dec 28, 2023
1 The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc. 5 authors · May 28, 2024
- Connecting a French Dictionary from the Beginning of the 20th Century to Wikidata The Petit Larousse illustr\'e is a French dictionary first published in 1905. Its division in two main parts on language and on history and geography corresponds to a major milestone in French lexicography as well as a repository of general knowledge from this period. Although the value of many entries from 1905 remains intact, some descriptions now have a dimension that is more historical than contemporary. They are nonetheless significant to analyze and understand cultural representations from this time. A comparison with more recent information or a verification of these entries would require a tedious manual work. In this paper, we describe a new lexical resource, where we connected all the dictionary entries of the history and geography part to current data sources. For this, we linked each of these entries to a wikidata identifier. Using the wikidata links, we can automate more easily the identification, comparison, and verification of historically-situated representations. We give a few examples on how to process wikidata identifiers and we carried out a small analysis of the entities described in the dictionary to outline possible applications. The resource, i.e. the annotation of 20,245 dictionary entries with wikidata links, is available from GitHub url{https://github.com/pnugues/petit_larousse_1905/ 1 authors · Jun 22, 2022
1 Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment. 2 authors · Jan 7, 2020
- Learning to Recognize Musical Genre from Audio We here summarize our experience running a challenge with open data for musical genre recognition. Those notes motivate the task and the challenge design, show some statistics about the submissions, and present the results. 4 authors · Mar 13, 2018
- Bootstrapping Complete The Look at Pinterest Putting together an ideal outfit is a process that involves creativity and style intuition. This makes it a particularly difficult task to automate. Existing styling products generally involve human specialists and a highly curated set of fashion items. In this paper, we will describe how we bootstrapped the Complete The Look (CTL) system at Pinterest. This is a technology that aims to learn the subjective task of "style compatibility" in order to recommend complementary items that complete an outfit. In particular, we want to show recommendations from other categories that are compatible with an item of interest. For example, what are some heels that go well with this cocktail dress? We will introduce our outfit dataset of over 1 million outfits and 4 million objects, a subset of which we will make available to the research community, and describe the pipeline used to obtain and refresh this dataset. Furthermore, we will describe how we evaluate this subjective task and compare model performance across multiple training methods. Lastly, we will share our lessons going from experimentation to working prototype, and how to mitigate failure modes in the production environment. Our work represents one of the first examples of an industrial-scale solution for compatibility-based fashion recommendation. 5 authors · Jun 18, 2020
- Generative AI-Based Text Generation Methods Using Pre-Trained GPT-2 Model This work delved into the realm of automatic text generation, exploring a variety of techniques ranging from traditional deterministic approaches to more modern stochastic methods. Through analysis of greedy search, beam search, top-k sampling, top-p sampling, contrastive searching, and locally typical searching, this work has provided valuable insights into the strengths, weaknesses, and potential applications of each method. Each text-generating method is evaluated using several standard metrics and a comparative study has been made on the performance of the approaches. Finally, some future directions of research in the field of automatic text generation are also identified. 8 authors · Apr 2, 2024
1 ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style Transfer Textual style transfer is the task of transforming stylistic properties of text while preserving meaning. Target "styles" can be defined in numerous ways, ranging from single attributes (e.g, formality) to authorship (e.g, Shakespeare). Previous unsupervised style-transfer approaches generally rely on significant amounts of labeled data for only a fixed set of styles or require large language models. In contrast, we introduce a novel diffusion-based framework for general-purpose style transfer that can be flexibly adapted to arbitrary target styles at inference time. Our parameter-efficient approach, ParaGuide, leverages paraphrase-conditioned diffusion models alongside gradient-based guidance from both off-the-shelf classifiers and strong existing style embedders to transform the style of text while preserving semantic information. We validate the method on the Enron Email Corpus, with both human and automatic evaluations, and find that it outperforms strong baselines on formality, sentiment, and even authorship style transfer. 5 authors · Aug 29, 2023
- Speakerly: A Voice-based Writing Assistant for Text Composition We present Speakerly, a new real-time voice-based writing assistance system that helps users with text composition across various use cases such as emails, instant messages, and notes. The user can interact with the system through instructions or dictation, and the system generates a well-formatted and coherent document. We describe the system architecture and detail how we address the various challenges while building and deploying such a system at scale. More specifically, our system uses a combination of small, task-specific models as well as pre-trained language models for fast and effective text composition while supporting a variety of input modes for better usability. 8 authors · Oct 24, 2023
- A Dataset for Metaphor Detection in Early Medieval Hebrew Poetry There is a large volume of late antique and medieval Hebrew texts. They represent a crucial linguistic and cultural bridge between Biblical and modern Hebrew. Poetry is prominent in these texts and one of its main haracteristics is the frequent use of metaphor. Distinguishing figurative and literal language use is a major task for scholars of the Humanities, especially in the fields of literature, linguistics, and hermeneutics. This paper presents a new, challenging dataset of late antique and medieval Hebrew poetry with expert annotations of metaphor, as well as some baseline results, which we hope will facilitate further research in this area. 5 authors · Feb 27, 2024
- Substance Beats Style: Why Beginning Students Fail to Code with LLMs Although LLMs are increasing the productivity of professional programmers, existing work shows that beginners struggle to prompt LLMs to solve text-to-code tasks. Why is this the case? This paper explores two competing hypotheses about the cause of student-LLM miscommunication: (1) students simply lack the technical vocabulary needed to write good prompts, and (2) students do not understand the extent of information that LLMs need to solve code generation tasks. We study (1) with a causal intervention experiment on technical vocabulary and (2) by analyzing graphs that abstract how students edit prompts and the different failures that they encounter. We find that substance beats style: a poor grasp of technical vocabulary is merely correlated with prompt failure; that the information content of prompts predicts success; that students get stuck making trivial edits; and more. Our findings have implications for the use of LLMs in programming education, and for efforts to make computing more accessible with LLMs. 5 authors · Oct 15, 2024
2 Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law. 6 authors · May 30, 2024
- Talking About Large Language Models Thanks to rapid progress in artificial intelligence, we have entered an era when technology and philosophy intersect in interesting ways. Sitting squarely at the centre of this intersection are large language models (LLMs). The more adept LLMs become at mimicking human language, the more vulnerable we become to anthropomorphism, to seeing the systems in which they are embedded as more human-like than they really are. This trend is amplified by the natural tendency to use philosophically loaded terms, such as "knows", "believes", and "thinks", when describing these systems. To mitigate this trend, this paper advocates the practice of repeatedly stepping back to remind ourselves of how LLMs, and the systems of which they form a part, actually work. The hope is that increased scientific precision will encourage more philosophical nuance in the discourse around artificial intelligence, both within the field and in the public sphere. 1 authors · Dec 7, 2022
- Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies We present NEWSROOM, a summarization dataset of 1.3 million articles and summaries written by authors and editors in newsrooms of 38 major news publications. Extracted from search and social media metadata between 1998 and 2017, these high-quality summaries demonstrate high diversity of summarization styles. In particular, the summaries combine abstractive and extractive strategies, borrowing words and phrases from articles at varying rates. We analyze the extraction strategies used in NEWSROOM summaries against other datasets to quantify the diversity and difficulty of our new data, and train existing methods on the data to evaluate its utility and challenges. 3 authors · Apr 30, 2018
- Visual Style Prompting with Swapping Self-Attention In the evolving domain of text-to-image generation, diffusion models have emerged as powerful tools in content creation. Despite their remarkable capability, existing models still face challenges in achieving controlled generation with a consistent style, requiring costly fine-tuning or often inadequately transferring the visual elements due to content leakage. To address these challenges, we propose a novel approach, \ours, to produce a diverse range of images while maintaining specific style elements and nuances. During the denoising process, we keep the query from original features while swapping the key and value with those from reference features in the late self-attention layers. This approach allows for the visual style prompting without any fine-tuning, ensuring that generated images maintain a faithful style. Through extensive evaluation across various styles and text prompts, our method demonstrates superiority over existing approaches, best reflecting the style of the references and ensuring that resulting images match the text prompts most accurately. Our project page is available https://curryjung.github.io/VisualStylePrompt/. 5 authors · Feb 20, 2024
- TSST: A Benchmark and Evaluation Models for Text Speech-Style Transfer Text style is highly abstract, as it encompasses various aspects of a speaker's characteristics, habits, logical thinking, and the content they express. However, previous text-style transfer tasks have primarily focused on data-driven approaches, lacking in-depth analysis and research from the perspectives of linguistics and cognitive science. In this paper, we introduce a novel task called Text Speech-Style Transfer (TSST). The main objective is to further explore topics related to human cognition, such as personality and emotion, based on the capabilities of existing LLMs. Considering the objective of our task and the distinctive characteristics of oral speech in real-life scenarios, we trained multi-dimension (i.e. filler words, vividness, interactivity, emotionality) evaluation models for the TSST and validated their correlation with human assessments. We thoroughly analyze the performance of several large language models (LLMs) and identify areas where further improvement is needed. Moreover, driven by our evaluation models, we have released a new corpus that improves the capabilities of LLMs in generating text with speech-style characteristics. In summary, we present the TSST task, a new benchmark for style transfer and emphasizing human-oriented evaluation, exploring and advancing the performance of current LLMs. 6 authors · Nov 14, 2023
- EmpLite: A Lightweight Sequence Labeling Model for Emphasis Selection of Short Texts Word emphasis in textual content aims at conveying the desired intention by changing the size, color, typeface, style (bold, italic, etc.), and other typographical features. The emphasized words are extremely helpful in drawing the readers' attention to specific information that the authors wish to emphasize. However, performing such emphasis using a soft keyboard for social media interactions is time-consuming and has an associated learning curve. In this paper, we propose a novel approach to automate the emphasis word detection on short written texts. To the best of our knowledge, this work presents the first lightweight deep learning approach for smartphone deployment of emphasis selection. Experimental results show that our approach achieves comparable accuracy at a much lower model size than existing models. Our best lightweight model has a memory footprint of 2.82 MB with a matching score of 0.716 on SemEval-2020 public benchmark dataset. 7 authors · Dec 15, 2020
- Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance In the last decade, several organizations have produced documents intended to standardize, in the normative sense, and promote guidance to our recent and rapid AI development. However, the full spectrum of ideas presented in these documents has not yet been analyzed, except for a few meta-analyses and critical reviews of the field. In this work, we seek to expand on the work done by past researchers and create a tool for better data visualization of the contents and nature of these documents, to understand whether there is consensus or similarity between the principles espoused by various institutions, which may inspire debates on future regulations. We also provide some preliminary thoughts and questions that could guide the continuity of the research through a critical analysis of the results acquired by our methodology into a sample size of 200 documents. 10 authors · Jun 23, 2022
- SubData: A Python Library to Collect and Combine Datasets for Evaluating LLM Alignment on Downstream Tasks With the release of ever more capable large language models (LLMs), researchers in NLP and related disciplines have started to explore the usability of LLMs for a wide variety of different annotation tasks. Very recently, a lot of this attention has shifted to tasks that are subjective in nature. Given that the latest generations of LLMs have digested and encoded extensive knowledge about different human subpopulations and individuals, the hope is that these models can be trained, tuned or prompted to align with a wide range of different human perspectives. While researchers already evaluate the success of this alignment via surveys and tests, there is a lack of resources to evaluate the alignment on what oftentimes matters the most in NLP; the actual downstream tasks. To fill this gap we present SubData, a Python library that offers researchers working on topics related to subjectivity in annotation tasks a convenient way of collecting, combining and using a range of suitable datasets. 3 authors · Dec 21, 2024
- Text Annotation Handbook: A Practical Guide for Machine Learning Projects This handbook is a hands-on guide on how to approach text annotation tasks. It provides a gentle introduction to the topic, an overview of theoretical concepts as well as practical advice. The topics covered are mostly technical, but business, ethical and regulatory issues are also touched upon. The focus lies on readability and conciseness rather than completeness and scientific rigor. Experience with annotation and knowledge of machine learning are useful but not required. The document may serve as a primer or reference book for a wide range of professions such as team leaders, project managers, IT architects, software developers and machine learning engineers. 8 authors · Oct 18, 2023
- The Impact of Generative AI on the Future of Visual Content Marketing In today's world of marketing, it is necessary to have visually appealing content. Visual material has become an essential area of focus for every company as a result of the widespread availability of gadgets for mass communication and extended visual advancements. Similarly, artificial intelligence is also gaining ground and it is proving to be the most revolutionary technological advancement thus far. The integration of visual content with artificial intelligence is the key to acquiring and retaining loyal customers; its absence from the overarching marketing strategy of any production raises a red flag that could ultimately result in a smaller market share for that company. 2 authors · Nov 22, 2022
- Enriching Music Descriptions with a Finetuned-LLM and Metadata for Text-to-Music Retrieval Text-to-Music Retrieval, finding music based on a given natural language query, plays a pivotal role in content discovery within extensive music databases. To address this challenge, prior research has predominantly focused on a joint embedding of music audio and text, utilizing it to retrieve music tracks that exactly match descriptive queries related to musical attributes (i.e. genre, instrument) and contextual elements (i.e. mood, theme). However, users also articulate a need to explore music that shares similarities with their favorite tracks or artists, such as I need a similar track to Superstition by Stevie Wonder. To address these concerns, this paper proposes an improved Text-to-Music Retrieval model, denoted as TTMR++, which utilizes rich text descriptions generated with a finetuned large language model and metadata. To accomplish this, we obtained various types of seed text from several existing music tag and caption datasets and a knowledge graph dataset of artists and tracks. The experimental results show the effectiveness of TTMR++ in comparison to state-of-the-art music-text joint embedding models through a comprehensive evaluation involving various musical text queries. 4 authors · Oct 4, 2024
- Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature. 3 authors · Jul 12, 2021
11 Style Aligned Image Generation via Shared Attention Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs. 4 authors · Dec 4, 2023 1
- Southern Newswire Corpus: A Large-Scale Dataset of Mid-Century Wire Articles Beyond the Front Page I introduce a new large-scale dataset of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services: The Associated Press, United Press International, Newspaper Enterprise Association. Unlike prior work focusing on front-page content, this dataset captures articles across the entire newspaper, offering broader insight into mid-century Southern coverage. The dataset includes a version that has undergone an LLM-based text cleanup pipeline to reduce OCR noise, enhancing its suitability for quantitative text analysis. Additionally, duplicate versions of articles are retained to enable analysis of editorial differences in language and framing across newspapers. Each article is tagged by wire service, facilitating comparative studies of editorial patterns across agencies. This resource opens new avenues for research in computational social science, digital humanities, and historical linguistics, providing a detailed perspective on how Southern newspapers relayed national and international news during a transformative period in American history. The dataset will be made available upon publication or request for research purposes. 1 authors · Feb 17
- Fine-grained Czech News Article Dataset: An Interdisciplinary Approach to Trustworthiness Analysis We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over 10,000 unique articles from almost 60 Czech online news sources. These are categorized into one of the 4 classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of 0.52. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy. 4 authors · Dec 16, 2022
- ChatGPT vs Human-authored Text: Insights into Controllable Text Summarization and Sentence Style Transfer Large-scale language models, like ChatGPT, have garnered significant media attention and stunned the public with their remarkable capacity for generating coherent text from short natural language prompts. In this paper, we aim to conduct a systematic inspection of ChatGPT's performance in two controllable generation tasks, with respect to ChatGPT's ability to adapt its output to different target audiences (expert vs. layman) and writing styles (formal vs. informal). Additionally, we evaluate the faithfulness of the generated text, and compare the model's performance with human-authored texts. Our findings indicate that the stylistic variations produced by humans are considerably larger than those demonstrated by ChatGPT, and the generated texts diverge from human samples in several characteristics, such as the distribution of word types. Moreover, we observe that ChatGPT sometimes incorporates factual errors or hallucinations when adapting the text to suit a specific style. 2 authors · Jun 13, 2023
- Evaluating Verifiability in Generative Search Engines Generative search engines directly generate responses to user queries, along with in-line citations. A prerequisite trait of a trustworthy generative search engine is verifiability, i.e., systems should cite comprehensively (high citation recall; all statements are fully supported by citations) and accurately (high citation precision; every cite supports its associated statement). We conduct human evaluation to audit four popular generative search engines -- Bing Chat, NeevaAI, perplexity.ai, and YouChat -- across a diverse set of queries from a variety of sources (e.g., historical Google user queries, dynamically-collected open-ended questions on Reddit, etc.). We find that responses from existing generative search engines are fluent and appear informative, but frequently contain unsupported statements and inaccurate citations: on average, a mere 51.5% of generated sentences are fully supported by citations and only 74.5% of citations support their associated sentence. We believe that these results are concerningly low for systems that may serve as a primary tool for information-seeking users, especially given their facade of trustworthiness. We hope that our results further motivate the development of trustworthy generative search engines and help researchers and users better understand the shortcomings of existing commercial systems. 3 authors · Apr 19, 2023
- Learning to Determine the Quality of News Headlines Today, most newsreaders read the online version of news articles rather than traditional paper-based newspapers. Also, news media publishers rely heavily on the income generated from subscriptions and website visits made by newsreaders. Thus, online user engagement is a very important issue for online newspapers. Much effort has been spent on writing interesting headlines to catch the attention of online users. On the other hand, headlines should not be misleading (e.g., clickbaits); otherwise, readers would be disappointed when reading the content. In this paper, we propose four indicators to determine the quality of published news headlines based on their click count and dwell time, which are obtained by website log analysis. Then, we use soft target distribution of the calculated quality indicators to train our proposed deep learning model which can predict the quality of unpublished news headlines. The proposed model not only processes the latent features of both headline and body of the article to predict its headline quality but also considers the semantic relation between headline and body as well. To evaluate our model, we use a real dataset from a major Canadian newspaper. Results show our proposed model outperforms other state-of-the-art NLP models. 4 authors · Nov 25, 2019
- Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S. News Headlines There is a broad consensus that news media outlets incorporate ideological biases in their news articles. However, prior studies on measuring the discrepancies among media outlets and further dissecting the origins of thematic differences suffer from small sample sizes and limited scope and granularity. In this study, we use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022 to thoroughly track and dissect the fine-grained thematic discrepancy in U.S. news media. We employ multiple correspondence analysis (MCA) to quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs in order to derive a more holistic analysis. Additionally, we compare the most frequent n-grams in media headlines to provide further qualitative insights into our analysis. Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias. Meanwhile, the discrepancy in reporting foreign affairs is largely attributed to the diversity in individual journalistic styles. Finally, U.S. media outlets show consistency and high similarity in their coverage of economic issues. 5 authors · Mar 27, 2023
- Do Language Models Know When They're Hallucinating References? State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references. 4 authors · May 29, 2023
- A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods. 7 authors · Jan 4, 2023
1 InstaStyle: Inversion Noise of a Stylized Image is Secretly a Style Adviser Stylized text-to-image generation focuses on creating images from textual descriptions while adhering to a style specified by a few reference images. However, subtle style variations within different reference images can hinder the model from accurately learning the target style. In this paper, we propose InstaStyle, a novel approach that excels in generating high-fidelity stylized images with only a single reference image. Our approach is based on the finding that the inversion noise from a stylized reference image inherently carries the style signal, as evidenced by their non-zero signal-to-noise ratio. We employ DDIM inversion to extract this noise from the reference image and leverage a diffusion model to generate new stylized images from the ``style" noise. Additionally, the inherent ambiguity and bias of textual prompts impede the precise conveying of style. To address this, we introduce a learnable style token via prompt refinement, which enhances the accuracy of the style description for the reference image. Qualitative and quantitative experimental results demonstrate that InstaStyle achieves superior performance compared to current benchmarks. Furthermore, our approach also showcases its capability in the creative task of style combination with mixed inversion noise. 5 authors · Nov 25, 2023
- Identification of Rhetorical Roles of Sentences in Indian Legal Judgments Automatically understanding the rhetorical roles of sentences in a legal case judgement is an important problem to solve, since it can help in several downstream tasks like summarization of legal judgments, legal search, and so on. The task is challenging since legal case documents are usually not well-structured, and these rhetorical roles may be subjective (as evident from variation of opinions between legal experts). In this paper, we address this task for judgments from the Supreme Court of India. We label sentences in 50 documents using multiple human annotators, and perform an extensive analysis of the human-assigned labels. We also attempt automatic identification of the rhetorical roles of sentences. While prior approaches towards this task used Conditional Random Fields over manually handcrafted features, we explore the use of deep neural models which do not require hand-crafting of features. Experiments show that neural models perform much better in this task than baseline methods which use handcrafted features. 5 authors · Nov 13, 2019
- The Spotify Podcast Dataset Podcasts are a relatively new form of audio media. Episodes appear on a regular cadence, and come in many different formats and levels of formality. They can be formal news journalism or conversational chat; fiction or non-fiction. They are rapidly growing in popularity and yet have been relatively little studied. As an audio format, podcasts are more varied in style and production types than, say, broadcast news, and contain many more genres than typically studied in video research. The medium is therefore a rich domain with many research avenues for the IR and NLP communities. We present the Spotify Podcast Dataset, a set of approximately 100K podcast episodes comprised of raw audio files along with accompanying ASR transcripts. This represents over 47,000 hours of transcribed audio, and is an order of magnitude larger than previous speech-to-text corpora. 7 authors · Apr 8, 2020
- Text-to-Image Synthesis for Any Artistic Styles: Advancements in Personalized Artistic Image Generation via Subdivision and Dual Binding Recent advancements in text-to-image models, such as Stable Diffusion, have demonstrated their ability to synthesize visual images through natural language prompts. One approach of personalizing text-to-image models, exemplified by DreamBooth, fine-tunes the pre-trained model by binding unique text identifiers with a few images of a specific subject. Although existing fine-tuning methods have demonstrated competence in rendering images according to the styles of famous painters, it is still challenging to learn to produce images encapsulating distinct art styles due to abstract and broad visual perceptions of stylistic attributes such as lines, shapes, textures, and colors. In this paper, we introduce a new method, Single-StyleForge, for personalization. It fine-tunes pre-trained text-to-image diffusion models to generate diverse images in specified styles from text prompts. By using around 15-20 images of the target style, the approach establishes a foundational binding of a unique token identifier with a broad range of the target style. It also utilizes auxiliary images to strengthen this binding, resulting in offering specific guidance on representing elements such as persons in a target style-consistent manner. In addition, we present ways to improve the quality of style and text-image alignment through a method called Multi-StyleForge, which inherits the strategy used in StyleForge and learns tokens in multiple. Experimental evaluation conducted on six distinct artistic styles demonstrates substantial improvements in both the quality of generated images and the perceptual fidelity metrics, such as FID, KID, and CLIP scores. 3 authors · Apr 8, 2024
- A Massive Scale Semantic Similarity Dataset of Historical English A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time. 2 authors · Jun 30, 2023
- Fine-Grained Visual Classification of Aircraft This paper introduces FGVC-Aircraft, a new dataset containing 10,000 images of aircraft spanning 100 aircraft models, organised in a three-level hierarchy. At the finer level, differences between models are often subtle but always visually measurable, making visual recognition challenging but possible. A benchmark is obtained by defining corresponding classification tasks and evaluation protocols, and baseline results are presented. The construction of this dataset was made possible by the work of aircraft enthusiasts, a strategy that can extend to the study of number of other object classes. Compared to the domains usually considered in fine-grained visual classification (FGVC), for example animals, aircraft are rigid and hence less deformable. They, however, present other interesting modes of variation, including purpose, size, designation, structure, historical style, and branding. 5 authors · Jun 21, 2013
- Stop Clickbait: Detecting and Preventing Clickbaits in Online News Media Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually don't live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesn't want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits. 4 authors · Oct 31, 2016
1 Pron vs Prompt: Can Large Language Models already Challenge a World-Class Fiction Author at Creative Text Writing? It has become routine to report research results where Large Language Models (LLMs) outperform average humans in a wide range of language-related tasks, and creative text writing is no exception. It seems natural, then, to raise the bid: Are LLMs ready to compete in creative writing skills with a top (rather than average) novelist? To provide an initial answer for this question, we have carried out a contest between Patricio Pron (an awarded novelist, considered one of the best of his generation) and GPT-4 (one of the top performing LLMs), in the spirit of AI-human duels such as DeepBlue vs Kasparov and AlphaGo vs Lee Sidol. We asked Pron and GPT-4 to provide thirty titles each, and then to write short stories for both their titles and their opponent's. Then, we prepared an evaluation rubric inspired by Boden's definition of creativity, and we collected 5,400 manual assessments provided by literature critics and scholars. The results of our experimentation indicate that LLMs are still far from challenging a top human creative writer, and that reaching such level of autonomous creative writing skills probably cannot be reached simply with larger language models. 4 authors · Jul 1, 2024
2 AI training resources for GLAM: a snapshot We take a snapshot of current resources available for teaching and learning AI with a focus on the Galleries, Libraries, Archives and Museums (GLAM) community. The review was carried out in 2021 and 2022. The review provides an overview of material we identified as being relevant, offers a description of this material and makes recommendations for future work in this area. 6 authors · May 10, 2022
52 Seed-Music: A Unified Framework for High Quality and Controlled Music Generation We introduce Seed-Music, a suite of music generation systems capable of producing high-quality music with fine-grained style control. Our unified framework leverages both auto-regressive language modeling and diffusion approaches to support two key music creation workflows: controlled music generation and post-production editing. For controlled music generation, our system enables vocal music generation with performance controls from multi-modal inputs, including style descriptions, audio references, musical scores, and voice prompts. For post-production editing, it offers interactive tools for editing lyrics and vocal melodies directly in the generated audio. We encourage readers to listen to demo audio examples at https://team.doubao.com/seed-music . 38 authors · Sep 13, 2024 3
- Controlling Personality-Based Stylistic Variation with Neural Natural Language Generators Natural language generators for task-oriented dialogue must effectively realize system dialogue actions and their associated semantics. In many applications, it is also desirable for generators to control the style of an utterance. To date, work on task-oriented neural generation has primarily focused on semantic fidelity rather than achieving stylistic goals, while work on style has been done in contexts where it is difficult to measure content preservation. Here we present three different sequence-to-sequence models and carefully test how well they disentangle content and style. We use a statistical generator, Personage, to synthesize a new corpus of over 88,000 restaurant domain utterances whose style varies according to models of personality, giving us total control over both the semantic content and the stylistic variation in the training data. We then vary the amount of explicit stylistic supervision given to the three models. We show that our most explicit model can simultaneously achieve high fidelity to both semantic and stylistic goals: this model adds a context vector of 36 stylistic parameters as input to the hidden state of the encoder at each time step, showing the benefits of explicit stylistic supervision, even when the amount of training data is large. 6 authors · May 21, 2018
1 Kuaipedia: a Large-scale Multi-modal Short-video Encyclopedia Online encyclopedias, such as Wikipedia, have been well-developed and researched in the last two decades. One can find any attributes or other information of a wiki item on a wiki page edited by a community of volunteers. However, the traditional text, images and tables can hardly express some aspects of an wiki item. For example, when we talk about ``Shiba Inu'', one may care more about ``How to feed it'' or ``How to train it not to protect its food''. Currently, short-video platforms have become a hallmark in the online world. Whether you're on TikTok, Instagram, Kuaishou, or YouTube Shorts, short-video apps have changed how we consume and create content today. Except for producing short videos for entertainment, we can find more and more authors sharing insightful knowledge widely across all walks of life. These short videos, which we call knowledge videos, can easily express any aspects (e.g. hair or how-to-feed) consumers want to know about an item (e.g. Shiba Inu), and they can be systematically analyzed and organized like an online encyclopedia. In this paper, we propose Kuaipedia, a large-scale multi-modal encyclopedia consisting of items, aspects, and short videos lined to them, which was extracted from billions of videos of Kuaishou (Kwai), a well-known short-video platform in China. We first collected items from multiple sources and mined user-centered aspects from millions of users' queries to build an item-aspect tree. Then we propose a new task called ``multi-modal item-aspect linking'' as an expansion of ``entity linking'' to link short videos into item-aspect pairs and build the whole short-video encyclopedia. Intrinsic evaluations show that our encyclopedia is of large scale and highly accurate. We also conduct sufficient extrinsic experiments to show how Kuaipedia can help fundamental applications such as entity typing and entity linking. 8 authors · Oct 28, 2022
- Understanding writing style in social media with a supervised contrastively pre-trained transformer Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation. Malicious actors now have unprecedented freedom to misbehave, leading to severe societal unrest and dire consequences, as exemplified by events such as the Capitol assault during the US presidential election and the Antivaxx movement during the COVID-19 pandemic. Understanding online language has become more pressing than ever. While existing works predominantly focus on content analysis, we aim to shift the focus towards understanding harmful behaviors by relating content to their respective authors. Numerous novel approaches attempt to learn the stylistic features of authors in texts, but many of these approaches are constrained by small datasets or sub-optimal training losses. To overcome these limitations, we introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 10^6 authored texts involving 70k heterogeneous authors. Our model leverages Supervised Contrastive Loss to teach the model to minimize the distance between texts authored by the same individual. This author pretext pre-training task yields competitive performance at zero-shot with PAN challenges on attribution and clustering. Additionally, we attain promising results on PAN verification challenges using a single dense layer, with our model serving as an embedding encoder. Finally, we present results from our test partition on Reddit. Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80\% accuracy. We share our pre-trained model at huggingface (https://huggingface.co/AIDA-UPM/star) and our code is available at (https://github.com/jahuerta92/star) 3 authors · Oct 17, 2023
- Inclusivity in Large Language Models: Personality Traits and Gender Bias in Scientific Abstracts Large language models (LLMs) are increasingly utilized to assist in scientific and academic writing, helping authors enhance the coherence of their articles. Previous studies have highlighted stereotypes and biases present in LLM outputs, emphasizing the need to evaluate these models for their alignment with human narrative styles and potential gender biases. In this study, we assess the alignment of three prominent LLMs - Claude 3 Opus, Mistral AI Large, and Gemini 1.5 Flash - by analyzing their performance on benchmark text-generation tasks for scientific abstracts. We employ the Linguistic Inquiry and Word Count (LIWC) framework to extract lexical, psychological, and social features from the generated texts. Our findings indicate that, while these models generally produce text closely resembling human authored content, variations in stylistic features suggest significant gender biases. This research highlights the importance of developing LLMs that maintain a diversity of writing styles to promote inclusivity in academic discourse. 2 authors · Jun 27, 2024
- Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images. 4 authors · May 8, 2020
1 Reading the unreadable: Creating a dataset of 19th century English newspapers using image-to-text language models Oscar Wilde said, "The difference between literature and journalism is that journalism is unreadable, and literature is not read." Unfortunately, The digitally archived journalism of Oscar Wilde's 19th century often has no or poor quality Optical Character Recognition (OCR), reducing the accessibility of these archives and making them unreadable both figuratively and literally. This paper helps address the issue by performing OCR on "The Nineteenth Century Serials Edition" (NCSE), an 84k-page collection of 19th-century English newspapers and periodicals, using Pixtral 12B, a pre-trained image-to-text language model. The OCR capability of Pixtral was compared to 4 other OCR approaches, achieving a median character error rate of 1%, 5x lower than the next best model. The resulting NCSE v2.0 dataset features improved article identification, high-quality OCR, and text classified into four types and seventeen topics. The dataset contains 1.4 million entries, and 321 million words. Example use cases demonstrate analysis of topic similarity, readability, and event tracking. NCSE v2.0 is freely available to encourage historical and sociological research. As a result, 21st-century readers can now share Oscar Wilde's disappointment with 19th-century journalistic standards, reading the unreadable from the comfort of their own computers. 1 authors · Feb 18
1 Few-Shot Detection of Machine-Generated Text using Style Representations The advent of instruction-tuned language models that convincingly mimic human writing poses a significant risk of abuse. However, such abuse may be counteracted with the ability to detect whether a piece of text was composed by a language model rather than a human author. Some previous approaches to this problem have relied on supervised methods by training on corpora of confirmed human- and machine- written documents. Unfortunately, model under-specification poses an unavoidable challenge for neural network-based detectors, making them brittle in the face of data shifts, such as the release of newer language models producing still more fluent text than the models used to train the detectors. Other approaches require access to the models that may have generated a document in question, which is often impractical. In light of these challenges, we pursue a fundamentally different approach not relying on samples from language models of concern at training time. Instead, we propose to leverage representations of writing style estimated from human-authored text. Indeed, we find that features effective at distinguishing among human authors are also effective at distinguishing human from machine authors, including state-of-the-art large language models like Llama-2, ChatGPT, and GPT-4. Furthermore, given a handful of examples composed by each of several specific language models of interest, our approach affords the ability to predict which model generated a given document. The code and data to reproduce our experiments are available at https://github.com/LLNL/LUAR/tree/main/fewshot_iclr2024. 6 authors · Jan 12, 2024
1 Let Me Choose: From Verbal Context to Font Selection In this paper, we aim to learn associations between visual attributes of fonts and the verbal context of the texts they are typically applied to. Compared to related work leveraging the surrounding visual context, we choose to focus only on the input text as this can enable new applications for which the text is the only visual element in the document. We introduce a new dataset, containing examples of different topics in social media posts and ads, labeled through crowd-sourcing. Due to the subjective nature of the task, multiple fonts might be perceived as acceptable for an input text, which makes this problem challenging. To this end, we investigate different end-to-end models to learn label distributions on crowd-sourced data and capture inter-subjectivity across all annotations. 6 authors · May 3, 2020
1 A PhD Student's Perspective on Research in NLP in the Era of Very Large Language Models Recent progress in large language models has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that ``it's all been solved.'' Not surprisingly, this has in turn made many NLP researchers -- especially those at the beginning of their career -- wonder about what NLP research area they should focus on. This document is a compilation of NLP research directions that are rich for exploration, reflecting the views of a diverse group of PhD students in an academic research lab. While we identify many research areas, many others exist; we do not cover those areas that are currently addressed by LLMs but where LLMs lag behind in performance, or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm 22 authors · May 21, 2023
- Two Case Studies of Experience Prototyping Machine Learning Systems in the Wild Throughout the course of my Ph.D., I have been designing the user experience (UX) of various machine learning (ML) systems. In this workshop, I share two projects as case studies in which people engage with ML in much more complicated and nuanced ways than the technical HCML work might assume. The first case study describes how cardiology teams in three hospitals used a clinical decision-support system that helps them decide whether and when to implant an artificial heart to a heart failure patient. I demonstrate that physicians cannot draw on their decision-making experience by seeing only patient data on paper. They are also confused by some fundamental premises upon which ML operates. For example, physicians asked: Are ML predictions made based on clinicians' best efforts? Is it ethical to make decisions based on previous patients' collective outcomes? In the second case study, my collaborators and I designed an intelligent text editor, with the goal of improving authors' writing experience with NLP (Natural Language Processing) technologies. We prototyped a number of generative functionalities where the system provides phrase-or-sentence-level writing suggestions upon user request. When writing with the prototype, however, authors shared that they need to "see where the sentence is going two paragraphs later" in order to decide whether the suggestion aligns with their writing; Some even considered adopting machine suggestions as plagiarism, therefore "is simply wrong". By sharing these unexpected and intriguing responses from these real-world ML users, I hope to start a discussion about such previously-unknown complexities and nuances of -- as the workshop proposal states -- "putting ML at the service of people in a way that is accessible, useful, and trustworthy to all". 1 authors · Oct 20, 2019
- WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc. 13 authors · Aug 10, 2023
2 Insightful analysis of historical sources at scales beyond human capabilities using unsupervised Machine Learning and XAI Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The vast volume of materials precludes comprehensive studies, given the restricted number of human specialists. However, as large amounts of historical materials are now available in digital form there is a promising opportunity for AI-assisted historical analysis. In this work, we take a pivotal step towards analyzing vast historical corpora by employing innovative machine learning (ML) techniques, enabling in-depth historical insights on a grand scale. Our study centers on the evolution of knowledge within the `Sacrobosco Collection' -- a digitized collection of 359 early modern printed editions of textbooks on astronomy used at European universities between 1472 and 1650 -- roughly 76,000 pages, many of which contain astronomic, computational tables. An ML based analysis of these tables helps to unveil important facets of the spatio-temporal evolution of knowledge and innovation in the field of mathematical astronomy in the period, as taught at European universities. 6 authors · Oct 13, 2023
- Rethinking Search: Making Domain Experts out of Dilettantes When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice. 4 authors · May 5, 2021
- Textual Aesthetics in Large Language Models Image aesthetics is a crucial metric in the field of image generation. However, textual aesthetics has not been sufficiently explored. With the widespread application of large language models (LLMs), previous work has primarily focused on the correctness of content and the helpfulness of responses. Nonetheless, providing responses with textual aesthetics is also an important factor for LLMs, which can offer a cleaner layout and ensure greater consistency and coherence in content. In this work, we introduce a pipeline for aesthetics polishing and help construct a textual aesthetics dataset named TexAes. We propose a textual aesthetics-powered fine-tuning method based on direct preference optimization, termed TAPO, which leverages textual aesthetics without compromising content correctness. Additionally, we develop two evaluation methods for textual aesthetics based on text and image analysis, respectively. Our experiments demonstrate that using textual aesthetics data and employing the TAPO fine-tuning method not only improves aesthetic scores but also enhances performance on general evaluation datasets such as AlpacalEval and Anera-hard. 4 authors · Nov 5, 2024
2 TinyStyler: Efficient Few-Shot Text Style Transfer with Authorship Embeddings The goal of text style transfer is to transform the style of texts while preserving their original meaning, often with only a few examples of the target style. Existing style transfer methods generally rely on the few-shot capabilities of large language models or on complex controllable text generation approaches that are inefficient and underperform on fluency metrics. We introduce TinyStyler, a lightweight but effective approach, which leverages a small language model (800M params) and pre-trained authorship embeddings to perform efficient, few-shot text style transfer. We evaluate on the challenging task of authorship style transfer and find TinyStyler outperforms strong approaches such as GPT-4. We also evaluate TinyStyler's ability to perform text attribute style transfer (formal leftrightarrow informal) with automatic and human evaluations and find that the approach outperforms recent controllable text generation methods. Our model has been made publicly available at https://huggingface.co/tinystyler/tinystyler . 6 authors · Jun 21, 2024
- StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We present an approach for generating styled drawings for a given text description where a user can specify a desired drawing style using a sample image. Inspired by a theory in art that style and content are generally inseparable during the creative process, we propose a coupled approach, known here as StyleCLIPDraw, whereby the drawing is generated by optimizing for style and content simultaneously throughout the process as opposed to applying style transfer after creating content in a sequence. Based on human evaluation, the styles of images generated by StyleCLIPDraw are strongly preferred to those by the sequential approach. Although the quality of content generation degrades for certain styles, overall considering both content and style, StyleCLIPDraw is found far more preferred, indicating the importance of style, look, and feel of machine generated images to people as well as indicating that style is coupled in the drawing process itself. Our code (https://github.com/pschaldenbrand/StyleCLIPDraw), a demonstration (https://replicate.com/pschaldenbrand/style-clip-draw), and style evaluation data (https://www.kaggle.com/pittsburghskeet/drawings-with-style-evaluation-styleclipdraw) are publicly available. 3 authors · Feb 24, 2022
- Not Only Generative Art: Stable Diffusion for Content-Style Disentanglement in Art Analysis The duality of content and style is inherent to the nature of art. For humans, these two elements are clearly different: content refers to the objects and concepts in the piece of art, and style to the way it is expressed. This duality poses an important challenge for computer vision. The visual appearance of objects and concepts is modulated by the style that may reflect the author's emotions, social trends, artistic movement, etc., and their deep comprehension undoubtfully requires to handle both. A promising step towards a general paradigm for art analysis is to disentangle content and style, whereas relying on human annotations to cull a single aspect of artworks has limitations in learning semantic concepts and the visual appearance of paintings. We thus present GOYA, a method that distills the artistic knowledge captured in a recent generative model to disentangle content and style. Experiments show that synthetically generated images sufficiently serve as a proxy of the real distribution of artworks, allowing GOYA to separately represent the two elements of art while keeping more information than existing methods. 3 authors · Apr 20, 2023
- PatentMatch: A Dataset for Matching Patent Claims & Prior Art Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch. 4 authors · Dec 27, 2020
2 ControlStyle: Text-Driven Stylized Image Generation Using Diffusion Priors Recently, the multimedia community has witnessed the rise of diffusion models trained on large-scale multi-modal data for visual content creation, particularly in the field of text-to-image generation. In this paper, we propose a new task for ``stylizing'' text-to-image models, namely text-driven stylized image generation, that further enhances editability in content creation. Given input text prompt and style image, this task aims to produce stylized images which are both semantically relevant to input text prompt and meanwhile aligned with the style image in style. To achieve this, we present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network enabling more conditions of text prompts and style images. Moreover, diffusion style and content regularizations are simultaneously introduced to facilitate the learning of this modulation network with these diffusion priors, pursuing high-quality stylized text-to-image generation. Extensive experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results, surpassing a simple combination of text-to-image model and conventional style transfer techniques. 4 authors · Nov 9, 2023
1 WonderJourney: Going from Anywhere to Everywhere We introduce WonderJourney, a modularized framework for perpetual 3D scene generation. Unlike prior work on view generation that focuses on a single type of scenes, we start at any user-provided location (by a text description or an image) and generate a journey through a long sequence of diverse yet coherently connected 3D scenes. We leverage an LLM to generate textual descriptions of the scenes in this journey, a text-driven point cloud generation pipeline to make a compelling and coherent sequence of 3D scenes, and a large VLM to verify the generated scenes. We show compelling, diverse visual results across various scene types and styles, forming imaginary "wonderjourneys". Project website: https://kovenyu.com/WonderJourney/ 11 authors · Dec 6, 2023
- Instruct-Tuning Pretrained Causal Language Models for Ancient Greek Papyrology and Epigraphy This article presents an experiment in fine-tuning a pretrained causal language model (Meta's Llama 3.1 8B Instruct) for aiding in three fundamental tasks of philological research: chronological and geographic attribution as well as text restoration in ancient Greek inscriptions and documentary papyri. Using a prompt-based instruct approach, the fine-tuned models surpass the state of the art in key metrics. For inscriptions, the models achieve a lower average character error rate (CER) of 22.5% (vs. 26.3%), while closely matching top-1 accuracy (60.9% vs. 61.8%) and top-20 accuracy (77.5% vs. 78.3%) for sequences up to 10 characters. They also provide a practical advantage by ignoring spaces during reconstruction, aligning better with the scriptio continua typically used in ancient written artifacts. In geographic attribution, the model outperforms previous benchmarks with a top-1 accuracy of 75.0% (vs. 70.8%) and a top-3 accuracy of 83.7% (vs. 82.1%). For dating, it achieves an average deviation of 26.2 years (vs. 29.3) and a median deviation of 1 year (vs. 3) from the actual date range. The models also set new baselines for documentary papyri, with a CER of 16.3%, a top-1 accuracy of 71.3%, and top-20 of 85.0% in text reconstruction; a top-1 accuracy of 66.4% and top-3 of 79.9% in geographic attribution; and, in chronological attribution, a deviation of 21.7 years from the actual termini post/ante quem, with a median deviation of 0 years. 1 authors · Sep 20, 2024
8 StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements Text-driven style transfer aims to merge the style of a reference image with content described by a text prompt. Recent advancements in text-to-image models have improved the nuance of style transformations, yet significant challenges remain, particularly with overfitting to reference styles, limiting stylistic control, and misaligning with textual content. In this paper, we propose three complementary strategies to address these issues. First, we introduce a cross-modal Adaptive Instance Normalization (AdaIN) mechanism for better integration of style and text features, enhancing alignment. Second, we develop a Style-based Classifier-Free Guidance (SCFG) approach that enables selective control over stylistic elements, reducing irrelevant influences. Finally, we incorporate a teacher model during early generation stages to stabilize spatial layouts and mitigate artifacts. Our extensive evaluations demonstrate significant improvements in style transfer quality and alignment with textual prompts. Furthermore, our approach can be integrated into existing style transfer frameworks without fine-tuning. 5 authors · Dec 11, 2024 2
1 SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities. 5 authors · Apr 10, 2017
- Love Me, Love Me, Say (and Write!) that You Love Me: Enriching the WASABI Song Corpus with Lyrics Annotations We present the WASABI Song Corpus, a large corpus of songs enriched with metadata extracted from music databases on the Web, and resulting from the processing of song lyrics and from audio analysis. More specifically, given that lyrics encode an important part of the semantics of a song, we focus here on the description of the methods we proposed to extract relevant information from the lyrics, such as their structure segmentation, their topics, the explicitness of the lyrics content, the salient passages of a song and the emotions conveyed. The creation of the resource is still ongoing: so far, the corpus contains 1.73M songs with lyrics (1.41M unique lyrics) annotated at different levels with the output of the above mentioned methods. Such corpus labels and the provided methods can be exploited by music search engines and music professionals (e.g. journalists, radio presenters) to better handle large collections of lyrics, allowing an intelligent browsing, categorization and segmentation recommendation of songs. 5 authors · Dec 5, 2019
- Detecting Mode Collapse in Language Models via Narration No two authors write alike. Personal flourishes invoked in written narratives, from lexicon to rhetorical devices, imply a particular author--what literary theorists label the implied or virtual author; distinct from the real author or narrator of a text. Early large language models trained on unfiltered training sets drawn from a variety of discordant sources yielded incoherent personalities, problematic for conversational tasks but proving useful for sampling literature from multiple perspectives. Successes in alignment research in recent years have allowed researchers to impose subjectively consistent personae on language models via instruction tuning and reinforcement learning from human feedback (RLHF), but whether aligned models retain the ability to model an arbitrary virtual author has received little scrutiny. By studying 4,374 stories sampled from three OpenAI language models, we show successive versions of GPT-3 suffer from increasing degrees of "mode collapse" whereby overfitting the model during alignment constrains it from generalizing over authorship: models suffering from mode collapse become unable to assume a multiplicity of perspectives. Our method and results are significant for researchers seeking to employ language models in sociological simulations. 1 authors · Feb 6, 2024
- Fine-grained Intent Classification in the Legal Domain A law practitioner has to go through a lot of long legal case proceedings. To understand the motivation behind the actions of different parties/individuals in a legal case, it is essential that the parts of the document that express an intent corresponding to the case be clearly understood. In this paper, we introduce a dataset of 93 legal documents, belonging to the case categories of either Murder, Land Dispute, Robbery, or Corruption, where phrases expressing intent same as the category of the document are annotated. Also, we annotate fine-grained intents for each such phrase to enable a deeper understanding of the case for a reader. Finally, we analyze the performance of several transformer-based models in automating the process of extracting intent phrases (both at a coarse and a fine-grained level), and classifying a document into one of the possible 4 categories, and observe that, our dataset is challenging, especially in the case of fine-grained intent classification. 5 authors · May 6, 2022
- Using clarification questions to improve software developers' Web search Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals. 2 authors · Jul 26, 2022
- Corpus for Automatic Structuring of Legal Documents In populous countries, pending legal cases have been growing exponentially. There is a need for developing techniques for processing and organizing legal documents. In this paper, we introduce a new corpus for structuring legal documents. In particular, we introduce a corpus of legal judgment documents in English that are segmented into topical and coherent parts. Each of these parts is annotated with a label coming from a list of pre-defined Rhetorical Roles. We develop baseline models for automatically predicting rhetorical roles in a legal document based on the annotated corpus. Further, we show the application of rhetorical roles to improve performance on the tasks of summarization and legal judgment prediction. We release the corpus and baseline model code along with the paper. 7 authors · Jan 31, 2022
- Large Legal Fictions: Profiling Legal Hallucinations in Large Language Models Large language models (LLMs) have the potential to transform the practice of law, but this potential is threatened by the presence of legal hallucinations -- responses from these models that are not consistent with legal facts. We investigate the extent of these hallucinations using an original suite of legal queries, comparing LLMs' responses to structured legal metadata and examining their consistency. Our work makes four key contributions: (1) We develop a typology of legal hallucinations, providing a conceptual framework for future research in this area. (2) We find that legal hallucinations are alarmingly prevalent, occurring between 69% of the time with ChatGPT 3.5 and 88% with Llama 2, when these models are asked specific, verifiable questions about random federal court cases. (3) We illustrate that LLMs often fail to correct a user's incorrect legal assumptions in a contra-factual question setup. (4) We provide evidence that LLMs cannot always predict, or do not always know, when they are producing legal hallucinations. Taken together, these findings caution against the rapid and unsupervised integration of popular LLMs into legal tasks. Even experienced lawyers must remain wary of legal hallucinations, and the risks are highest for those who stand to benefit from LLMs the most -- pro se litigants or those without access to traditional legal resources. 4 authors · Jan 2, 2024
- Tailored Visions: Enhancing Text-to-Image Generation with Personalized Prompt Rewriting Despite significant progress in the field, it is still challenging to create personalized visual representations that align closely with the desires and preferences of individual users. This process requires users to articulate their ideas in words that are both comprehensible to the models and accurately capture their vision, posing difficulties for many users. In this paper, we tackle this challenge by leveraging historical user interactions with the system to enhance user prompts. We propose a novel approach that involves rewriting user prompts based on a newly collected large-scale text-to-image dataset with over 300k prompts from 3115 users. Our rewriting model enhances the expressiveness and alignment of user prompts with their intended visual outputs. Experimental results demonstrate the superiority of our methods over baseline approaches, as evidenced in our new offline evaluation method and online tests. Our code and dataset are available at https://github.com/zzjchen/Tailored-Visions . 5 authors · Oct 12, 2023
- Empirical analysis of Binding Precedent efficiency in the Brazilian Supreme Court via Similar Case Retrieval Binding precedents (S\'umulas Vinculantes) constitute a juridical instrument unique to the Brazilian legal system and whose objectives include the protection of the Federal Supreme Court against repetitive demands. Studies of the effectiveness of these instruments in decreasing the Court's exposure to similar cases, however, indicate that they tend to fail in such a direction, with some of the binding precedents seemingly creating new demands. We empirically assess the legal impact of five binding precedents, 11, 14, 17, 26 and 37, at the highest court level through their effects on the legal subjects they address. This analysis is only possible through the comparison of the Court's ruling about the precedents' themes before they are created, which means that these decisions should be detected through techniques of Similar Case Retrieval. The contributions of this article are therefore twofold: on the mathematical side, we compare the uses of different methods of Natural Language Processing -- TF-IDF, LSTM, BERT, and regex -- for Similar Case Retrieval, whereas on the legal side, we contrast the inefficiency of these binding precedents with a set of hypotheses that may justify their repeated usage. We observe that the deep learning models performed significantly worse in the specific Similar Case Retrieval task and that the reasons for binding precedents to fail in responding to repetitive demand are heterogeneous and case-dependent, making it impossible to single out a specific cause. 6 authors · Jul 9, 2024
- Word-As-Image for Semantic Typography A word-as-image is a semantic typography technique where a word illustration presents a visualization of the meaning of the word, while also preserving its readability. We present a method to create word-as-image illustrations automatically. This task is highly challenging as it requires semantic understanding of the word and a creative idea of where and how to depict these semantics in a visually pleasing and legible manner. We rely on the remarkable ability of recent large pretrained language-vision models to distill textual concepts visually. We target simple, concise, black-and-white designs that convey the semantics clearly. We deliberately do not change the color or texture of the letters and do not use embellishments. Our method optimizes the outline of each letter to convey the desired concept, guided by a pretrained Stable Diffusion model. We incorporate additional loss terms to ensure the legibility of the text and the preservation of the style of the font. We show high quality and engaging results on numerous examples and compare to alternative techniques. 6 authors · Mar 3, 2023
- On a Seldom Oversight in Fermi's Calculations: Seventy Years Later We discuss an unfortunate mistake, for a Dirac free particle, in the last Fermi lecture notes on quantum mechanics, in a course given at the University of Chicago in winter and spring of 1954. As is demonstrated, the correct result can be obtained by a simple matrix multiplication. An attempt to collect a relevant bibliography is made. 1 authors · Jul 9, 2023
17 Measuring Style Similarity in Diffusion Models Generative models are now widely used by graphic designers and artists. Prior works have shown that these models remember and often replicate content from their training data during generation. Hence as their proliferation increases, it has become important to perform a database search to determine whether the properties of the image are attributable to specific training data, every time before a generated image is used for professional purposes. Existing tools for this purpose focus on retrieving images of similar semantic content. Meanwhile, many artists are concerned with style replication in text-to-image models. We present a framework for understanding and extracting style descriptors from images. Our framework comprises a new dataset curated using the insight that style is a subjective property of an image that captures complex yet meaningful interactions of factors including but not limited to colors, textures, shapes, etc. We also propose a method to extract style descriptors that can be used to attribute style of a generated image to the images used in the training dataset of a text-to-image model. We showcase promising results in various style retrieval tasks. We also quantitatively and qualitatively analyze style attribution and matching in the Stable Diffusion model. Code and artifacts are available at https://github.com/learn2phoenix/CSD. 8 authors · Apr 1, 2024 1
- A Network Analysis Approach to Conlang Research Literature The field of conlang has evidenced an important growth in the last decades. This has been the product of a wide interest in the use and study of conlangs for artistic purposes. However, one important question is what it is happening with conlang in the academic world. This paper aims to have an overall understanding of the literature on conlang research. With this we aim to give a realistic picture of the field in present days. We have implemented a computational linguistic approach, combining bibliometrics and network analysis to examine all publications available in the Scopus database. Analysing over 2300 academic publications since 1927 until 2022, we have found that Esperanto is by far the most documented conlang. Three main authors have contributed to this: Garv\'ia R., Fiedler S., and Blanke D. The 1970s and 1980s have been the decades where the foundations of current research have been built. In terms of methodologies, language learning and experimental linguistics are the ones contributing to most to the preferred approaches of study in the field. We present the results and discuss our limitations and future work. 1 authors · Jul 22, 2024
- How does Burrows' Delta work on medieval Chinese poetic texts? Burrows' Delta was introduced in 2002 and has proven to be an effective tool for author attribution. Despite the fact that these are different languages, they mostly belong to the same grammatical type and use the same graphic principle to convey speech in writing: a phonemic alphabet with word separation using spaces. The question I want to address in this article is how well this attribution method works with texts in a language with a different grammatical structure and a script based on different principles. There are fewer studies analyzing the effectiveness of the Delta method on Chinese texts than on texts in European languages. I believe that such a low level of attention to Delta from sinologists is due to the structure of the scientific field dedicated to medieval Chinese poetry. Clustering based on intertextual distances worked flawlessly. Delta produced results where clustering showed that the samples of one author were most similar to each other, and Delta never confused different poets. Despite the fact that I used an unconventional approach and applied the Delta method to a language poorly suited for it, the method demonstrated its effectiveness. Tang dynasty poets are correctly identified using Delta, and the empirical pattern observed for authors writing in European standard languages has been confirmed once again. 1 authors · Jul 10, 2024
- ClueWeb22: 10 Billion Web Documents with Visual and Semantic Information ClueWeb22, the newest iteration of the ClueWeb line of datasets, provides 10 billion web pages affiliated with rich information. Its design was influenced by the need for a high quality, large scale web corpus to support a range of academic and industry research, for example, in information systems, retrieval-augmented AI systems, and model pretraining. Compared with earlier ClueWeb corpora, the ClueWeb22 corpus is larger, more varied, of higher-quality, and aligned with the document distributions in commercial web search. Besides raw HTML, ClueWeb22 includes rich information about the web pages provided by industry-standard document understanding systems, including the visual representation of pages rendered by a web browser, parsed HTML structure information from a neural network parser, and pre-processed cleaned document text to lower the barrier to entry. Many of these signals have been widely used in industry but are available to the research community for the first time at this scale. 5 authors · Nov 28, 2022
- A Meta-Evaluation of Style and Attribute Transfer Metrics LLMs make it easy to rewrite text in any style, be it more polite, persuasive, or more positive. We present a large-scale study of evaluation metrics for style and attribute transfer with a focus on content preservation; meaning content not attributed to the style shift is preserved. The de facto evaluation approach uses lexical or semantic similarity metrics often between source sentences and rewrites. While these metrics are not designed to distinguish between style or content differences, empirical meta-evaluation shows a reasonable correlation to human judgment. In fact, recent works find that LLMs prompted as evaluators are only comparable to semantic similarity metrics, even though intuitively, the LLM approach should better fit the task. To investigate this discrepancy, we benchmark 8 metrics for evaluating content preservation on existing datasets and additionally construct a new test set that better aligns with the meta-evaluation aim. Indeed, we then find that the empirical conclusion aligns with the intuition: content preservation metrics for style/attribute transfer must be conditional on the style shift. To support this, we propose a new efficient zero-shot evaluation method using the likelihood of the next token. We hope our meta-evaluation can foster more research on evaluating content preservation metrics, and also to ensure fair evaluation of methods for conducting style transfer. 3 authors · Feb 20
- Bridging Text and Image for Artist Style Transfer via Contrastive Learning Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Using text is the most natural way to describe the style. More importantly, text can describe implicit abstract styles, like styles of specific artists or art movements. In this paper, we propose a Contrastive Learning for Artistic Style Transfer (CLAST) that leverages advanced image-text encoders to control arbitrary style transfer. We introduce a supervised contrastive training strategy to effectively extract style descriptions from the image-text model (i.e., CLIP), which aligns stylization with the text description. To this end, we also propose a novel and efficient adaLN based state space models that explore style-content fusion. Finally, we achieve a text-driven image style transfer. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods in artistic style transfer. More importantly, it does not require online fine-tuning and can render a 512x512 image in 0.03s. 4 authors · Oct 12, 2024
- LePaRD: A Large-Scale Dataset of Judges Citing Precedents We present the Legal Passage Retrieval Dataset LePaRD. LePaRD is a massive collection of U.S. federal judicial citations to precedent in context. The dataset aims to facilitate work on legal passage prediction, a challenging practice-oriented legal retrieval and reasoning task. Legal passage prediction seeks to predict relevant passages from precedential court decisions given the context of a legal argument. We extensively evaluate various retrieval approaches on LePaRD, and find that classification appears to work best. However, we note that legal precedent prediction is a difficult task, and there remains significant room for improvement. We hope that by publishing LePaRD, we will encourage others to engage with a legal NLP task that promises to help expand access to justice by reducing the burden associated with legal research. A subset of the LePaRD dataset is freely available and the whole dataset will be released upon publication. 4 authors · Nov 15, 2023
- PLSUM: Generating PT-BR Wikipedia by Summarizing Multiple Websites Wikipedia is an important free source of intelligible knowledge. Despite that, Brazilian Portuguese Wikipedia still lacks descriptions for many subjects. In an effort to expand the Brazilian Wikipedia, we contribute PLSum, a framework for generating wiki-like abstractive summaries from multiple descriptive websites. The framework has an extractive stage followed by an abstractive one. In particular, for the abstractive stage, we fine-tune and compare two recent variations of the Transformer neural network, PTT5, and Longformer. To fine-tune and evaluate the model, we created a dataset with thousands of examples, linking reference websites to Wikipedia. Our results show that it is possible to generate meaningful abstractive summaries from Brazilian Portuguese web content. 2 authors · Dec 2, 2021
- LegalNLP -- Natural Language Processing methods for the Brazilian Legal Language We present and make available pre-trained language models (Phraser, Word2Vec, Doc2Vec, FastText, and BERT) for the Brazilian legal language, a Python package with functions to facilitate their use, and a set of demonstrations/tutorials containing some applications involving them. Given that our material is built upon legal texts coming from several Brazilian courts, this initiative is extremely helpful for the Brazilian legal field, which lacks other open and specific tools and language models. Our main objective is to catalyze the use of natural language processing tools for legal texts analysis by the Brazilian industry, government, and academia, providing the necessary tools and accessible material. 9 authors · Oct 5, 2021
1 DeepStyle: Multimodal Search Engine for Fashion and Interior Design In this paper, we propose a multimodal search engine that combines visual and textual cues to retrieve items from a multimedia database aesthetically similar to the query. The goal of our engine is to enable intuitive retrieval of fashion merchandise such as clothes or furniture. Existing search engines treat textual input only as an additional source of information about the query image and do not correspond to the real-life scenario where the user looks for 'the same shirt but of denim'. Our novel method, dubbed DeepStyle, mitigates those shortcomings by using a joint neural network architecture to model contextual dependencies between features of different modalities. We prove the robustness of this approach on two different challenging datasets of fashion items and furniture where our DeepStyle engine outperforms baseline methods by 18-21% on the tested datasets. Our search engine is commercially deployed and available through a Web-based application. 5 authors · Jan 8, 2018
14 GhostWriter: Augmenting Collaborative Human-AI Writing Experiences Through Personalization and Agency Large language models (LLMs) are becoming more prevalent and have found a ubiquitous use in providing different forms of writing assistance. However, LLM-powered writing systems can frustrate users due to their limited personalization and control, which can be exacerbated when users lack experience with prompt engineering. We see design as one way to address these challenges and introduce GhostWriter, an AI-enhanced writing design probe where users can exercise enhanced agency and personalization. GhostWriter leverages LLMs to learn the user's intended writing style implicitly as they write, while allowing explicit teaching moments through manual style edits and annotations. We study 18 participants who use GhostWriter on two different writing tasks, observing that it helps users craft personalized text generations and empowers them by providing multiple ways to control the system's writing style. From this study, we present insights regarding people's relationship with AI-assisted writing and offer design recommendations for future work. 5 authors · Feb 13, 2024 4
- Studying the role of named entities for content preservation in text style transfer Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer. 5 authors · Jun 20, 2022
1 CaseSumm: A Large-Scale Dataset for Long-Context Summarization from U.S. Supreme Court Opinions This paper introduces CaseSumm, a novel dataset for long-context summarization in the legal domain that addresses the need for longer and more complex datasets for summarization evaluation. We collect 25.6K U.S. Supreme Court (SCOTUS) opinions and their official summaries, known as "syllabuses." Our dataset is the largest open legal case summarization dataset, and is the first to include summaries of SCOTUS decisions dating back to 1815. We also present a comprehensive evaluation of LLM-generated summaries using both automatic metrics and expert human evaluation, revealing discrepancies between these assessment methods. Our evaluation shows Mistral 7b, a smaller open-source model, outperforms larger models on most automatic metrics and successfully generates syllabus-like summaries. In contrast, human expert annotators indicate that Mistral summaries contain hallucinations. The annotators consistently rank GPT-4 summaries as clearer and exhibiting greater sensitivity and specificity. Further, we find that LLM-based evaluations are not more correlated with human evaluations than traditional automatic metrics. Furthermore, our analysis identifies specific hallucinations in generated summaries, including precedent citation errors and misrepresentations of case facts. These findings demonstrate the limitations of current automatic evaluation methods for legal summarization and highlight the critical role of human evaluation in assessing summary quality, particularly in complex, high-stakes domains. CaseSumm is available at https://huggingface.co/datasets/ChicagoHAI/CaseSumm 5 authors · Dec 30, 2024
3 mStyleDistance: Multilingual Style Embeddings and their Evaluation Style embeddings are useful for stylistic analysis and style transfer; however, only English style embeddings have been made available. We introduce Multilingual StyleDistance (mStyleDistance), a multilingual style embedding model trained using synthetic data and contrastive learning. We train the model on data from nine languages and create a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess the embeddings' quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing models on these multilingual style benchmarks and generalize well to unseen features and languages. We make our model publicly available at https://huggingface.co/StyleDistance/mstyledistance . 5 authors · Feb 20 2
- Copyright Violations and Large Language Models Language models may memorize more than just facts, including entire chunks of texts seen during training. Fair use exemptions to copyright laws typically allow for limited use of copyrighted material without permission from the copyright holder, but typically for extraction of information from copyrighted materials, rather than {\em verbatim} reproduction. This work explores the issue of copyright violations and large language models through the lens of verbatim memorization, focusing on possible redistribution of copyrighted text. We present experiments with a range of language models over a collection of popular books and coding problems, providing a conservative characterization of the extent to which language models can redistribute these materials. Overall, this research highlights the need for further examination and the potential impact on future developments in natural language processing to ensure adherence to copyright regulations. Code is at https://github.com/coastalcph/CopyrightLLMs. 4 authors · Oct 20, 2023
1 Inversion-Based Style Transfer with Diffusion Models The artistic style within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes including semantic elements, object shapes, etc. Previous arbitrary example-guided artistic image generation methods often fail to control shape changes or convey elements. The pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality, but it often requires extensive textual descriptions to accurately portray attributes of a particular painting. We believe that the uniqueness of an artwork lies precisely in the fact that it cannot be adequately explained with normal language. Our key idea is to learn artistic style directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we assume style as a learnable textual description of a painting. We propose an inversion-based style transfer method (InST), which can efficiently and accurately learn the key information of an image, thus capturing and transferring the artistic style of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Code and models are available at https://github.com/zyxElsa/InST. 7 authors · Nov 23, 2022
- Linking Named Entities in Diderot's Encyclopédie to Wikidata Diderot's Encyclop\'edie is a reference work from XVIIIth century in Europe that aimed at collecting the knowledge of its era. Wikipedia has the same ambition with a much greater scope. However, the lack of digital connection between the two encyclopedias may hinder their comparison and the study of how knowledge has evolved. A key element of Wikipedia is Wikidata that backs the articles with a graph of structured data. In this paper, we describe the annotation of more than 10,300 of the Encyclop\'edie entries with Wikidata identifiers enabling us to connect these entries to the graph. We considered geographic and human entities. The Encyclop\'edie does not contain biographic entries as they mostly appear as subentries of locations. We extracted all the geographic entries and we completely annotated all the entries containing a description of human entities. This represents more than 2,600 links referring to locations or human entities. In addition, we annotated more than 9,500 entries having a geographic content only. We describe the annotation process as well as application examples. This resource is available at https://github.com/pnugues/encyclopedie_1751 1 authors · Jun 5, 2024
- Creative Problem Solving in Large Language and Vision Models -- What Would it Take? We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs 3 authors · May 2, 2024
- Transforming Delete, Retrieve, Generate Approach for Controlled Text Style Transfer Text style transfer is the task of transferring the style of text having certain stylistic attributes, while preserving non-stylistic or content information. In this work we introduce the Generative Style Transformer (GST) - a new approach to rewriting sentences to a target style in the absence of parallel style corpora. GST leverages the power of both, large unsupervised pre-trained language models as well as the Transformer. GST is a part of a larger `Delete Retrieve Generate' framework, in which we also propose a novel method of deleting style attributes from the source sentence by exploiting the inner workings of the Transformer. Our models outperform state-of-art systems across 5 datasets on sentiment, gender and political slant transfer. We also propose the use of the GLEU metric as an automatic metric of evaluation of style transfer, which we found to compare better with human ratings than the predominantly used BLEU score. 3 authors · Aug 25, 2019
2 The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million Historic Newspaper Pages in Chronicling America Chronicling America is a product of the National Digital Newspaper Program, a partnership between the Library of Congress and the National Endowment for the Humanities to digitize historic newspapers. Over 16 million pages of historic American newspapers have been digitized for Chronicling America to date, complete with high-resolution images and machine-readable METS/ALTO OCR. Of considerable interest to Chronicling America users is a semantified corpus, complete with extracted visual content and headlines. To accomplish this, we introduce a visual content recognition model trained on bounding box annotations of photographs, illustrations, maps, comics, and editorial cartoons collected as part of the Library of Congress's Beyond Words crowdsourcing initiative and augmented with additional annotations including those of headlines and advertisements. We describe our pipeline that utilizes this deep learning model to extract 7 classes of visual content: headlines, photographs, illustrations, maps, comics, editorial cartoons, and advertisements, complete with textual content such as captions derived from the METS/ALTO OCR, as well as image embeddings for fast image similarity querying. We report the results of running the pipeline on 16.3 million pages from the Chronicling America corpus and describe the resulting Newspaper Navigator dataset, the largest dataset of extracted visual content from historic newspapers ever produced. The Newspaper Navigator dataset, finetuned visual content recognition model, and all source code are placed in the public domain for unrestricted re-use. 9 authors · May 4, 2020
- The COVID That Wasn't: Counterfactual Journalism Using GPT In this paper, we explore the use of large language models to assess human interpretations of real world events. To do so, we use a language model trained prior to 2020 to artificially generate news articles concerning COVID-19 given the headlines of actual articles written during the pandemic. We then compare stylistic qualities of our artificially generated corpus with a news corpus, in this case 5,082 articles produced by CBC News between January 23 and May 5, 2020. We find our artificially generated articles exhibits a considerably more negative attitude towards COVID and a significantly lower reliance on geopolitical framing. Our methods and results hold importance for researchers seeking to simulate large scale cultural processes via recent breakthroughs in text generation. 2 authors · Oct 12, 2022
- ChoralSynth: Synthetic Dataset of Choral Singing Choral singing, a widely practiced form of ensemble singing, lacks comprehensive datasets in the realm of Music Information Retrieval (MIR) research, due to challenges arising from the requirement to curate multitrack recordings. To address this, we devised a novel methodology, leveraging state-of-the-art synthesizers to create and curate quality renditions. The scores were sourced from Choral Public Domain Library(CPDL). This work is done in collaboration with a diverse team of musicians, software engineers and researchers. The resulting dataset, complete with its associated metadata, and methodology is released as part of this work, opening up new avenues for exploration and advancement in the field of singing voice research. 7 authors · Nov 14, 2023
- Emotion Identification for French in Written Texts: Considering their Modes of Expression as a Step Towards Text Complexity Analysis The objective of this paper is to predict (A) whether a sentence in a written text expresses an emotion, (B) the mode(s) in which it is expressed, (C) whether it is basic or complex, and (D) its emotional category. One of our major contributions, through a dataset and a model, is to integrate the fact that an emotion can be expressed in different modes: from a direct mode, essentially lexicalized, to a more indirect mode, where emotions will only be suggested, a mode that NLP approaches generally don't take into account. Another originality is that the scope is on written texts, as opposed usual work focusing on conversational (often multi-modal) data. In this context, modes of expression are seen as a factor towards the automatic analysis of complexity in texts. Experiments on French texts show acceptable results compared to the human annotators' agreement, and outperforming results compared to using a large language model with in-context learning (i.e. no fine-tuning). 3 authors · May 23, 2024
1 Musical Audio Similarity with Self-supervised Convolutional Neural Networks We have built a music similarity search engine that lets video producers search by listenable music excerpts, as a complement to traditional full-text search. Our system suggests similar sounding track segments in a large music catalog by training a self-supervised convolutional neural network with triplet loss terms and musical transformations. Semi-structured user interviews demonstrate that we can successfully impress professional video producers with the quality of the search experience, and perceived similarities to query tracks averaged 7.8/10 in user testing. We believe this search tool will make for a more natural search experience that is easier to find music to soundtrack videos with. 3 authors · Feb 4, 2022
- Few-Shot Font Generation by Learning Fine-Grained Local Styles Few-shot font generation (FFG), which aims to generate a new font with a few examples, is gaining increasing attention due to the significant reduction in labor cost. A typical FFG pipeline considers characters in a standard font library as content glyphs and transfers them to a new target font by extracting style information from the reference glyphs. Most existing solutions explicitly disentangle content and style of reference glyphs globally or component-wisely. However, the style of glyphs mainly lies in the local details, i.e. the styles of radicals, components, and strokes together depict the style of a glyph. Therefore, even a single character can contain different styles distributed over spatial locations. In this paper, we propose a new font generation approach by learning 1) the fine-grained local styles from references, and 2) the spatial correspondence between the content and reference glyphs. Therefore, each spatial location in the content glyph can be assigned with the right fine-grained style. To this end, we adopt cross-attention over the representation of the content glyphs as the queries and the representations of the reference glyphs as the keys and values. Instead of explicitly disentangling global or component-wise modeling, the cross-attention mechanism can attend to the right local styles in the reference glyphs and aggregate the reference styles into a fine-grained style representation for the given content glyphs. The experiments show that the proposed method outperforms the state-of-the-art methods in FFG. In particular, the user studies also demonstrate the style consistency of our approach significantly outperforms previous methods. 10 authors · May 20, 2022
1 Musical Form Generation While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form. 1 authors · Oct 30, 2023
10 Multimodal LLMs Can Reason about Aesthetics in Zero-Shot We present the first study on how Multimodal LLMs' (MLLMs) reasoning ability shall be elicited to evaluate the aesthetics of artworks. To facilitate this investigation, we construct MM-StyleBench, a novel high-quality dataset for benchmarking artistic stylization. We then develop a principled method for human preference modeling and perform a systematic correlation analysis between MLLMs' responses and human preference. Our experiments reveal an inherent hallucination issue of MLLMs in art evaluation, associated with response subjectivity. ArtCoT is proposed, demonstrating that art-specific task decomposition and the use of concrete language boost MLLMs' reasoning ability for aesthetics. Our findings offer valuable insights into MLLMs for art and can benefit a wide range of downstream applications, such as style transfer and artistic image generation. Code available at https://github.com/songrise/MLLM4Art. 2 authors · Jan 15 2
- New Textual Corpora for Serbian Language Modeling This paper will present textual corpora for Serbian (and Serbo-Croatian), usable for the training of large language models and publicly available at one of the several notable online repositories. Each corpus will be classified using multiple methods and its characteristics will be detailed. Additionally, the paper will introduce three new corpora: a new umbrella web corpus of Serbo-Croatian, a new high-quality corpus based on the doctoral dissertations stored within National Repository of Doctoral Dissertations from all Universities in Serbia, and a parallel corpus of abstract translation from the same source. The uniqueness of both old and new corpora will be accessed via frequency-based stylometric methods, and the results will be briefly discussed. 2 authors · May 15, 2024
- Text2Mesh: Text-Driven Neural Stylization for Meshes In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term neural style field network. In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes. 5 authors · Dec 6, 2021
- SpokesBiz -- an Open Corpus of Conversational Polish This paper announces the early release of SpokesBiz, a freely available corpus of conversational Polish developed within the CLARIN-BIZ project and comprising over 650 hours of recordings. The transcribed recordings have been diarized and manually annotated for punctuation and casing. We outline the general structure and content of the corpus, showcasing selected applications in linguistic research, evaluation and improvement of automatic speech recognition (ASR) systems 11 authors · Dec 19, 2023
2 Borges and AI Many believe that Large Language Models (LLMs) open the era of Artificial Intelligence (AI). Some see opportunities while others see dangers. Yet both proponents and opponents grasp AI through the imagery popularised by science fiction. Will the machine become sentient and rebel against its creators? Will we experience a paperclip apocalypse? Before answering such questions, we should first ask whether this mental imagery provides a good description of the phenomenon at hand. Understanding weather patterns through the moods of the gods only goes so far. The present paper instead advocates understanding LLMs and their connection to AI through the imagery of Jorge Luis Borges, a master of 20th century literature, forerunner of magical realism, and precursor to postmodern literature. This exercise leads to a new perspective that illuminates the relation between language modelling and artificial intelligence. 2 authors · Sep 27, 2023
- SemEval 2023 Task 6: LegalEval - Understanding Legal Texts In populous countries, pending legal cases have been growing exponentially. There is a need for developing NLP-based techniques for processing and automatically understanding legal documents. To promote research in the area of Legal NLP we organized the shared task LegalEval - Understanding Legal Texts at SemEval 2023. LegalEval task has three sub-tasks: Task-A (Rhetorical Roles Labeling) is about automatically structuring legal documents into semantically coherent units, Task-B (Legal Named Entity Recognition) deals with identifying relevant entities in a legal document and Task-C (Court Judgement Prediction with Explanation) explores the possibility of automatically predicting the outcome of a legal case along with providing an explanation for the prediction. In total 26 teams (approx. 100 participants spread across the world) submitted systems paper. In each of the sub-tasks, the proposed systems outperformed the baselines; however, there is a lot of scope for improvement. This paper describes the tasks, and analyzes techniques proposed by various teams. 9 authors · Apr 19, 2023
58 The Chosen One: Consistent Characters in Text-to-Image Diffusion Models Recent advances in text-to-image generation models have unlocked vast potential for visual creativity. However, these models struggle with generation of consistent characters, a crucial aspect for numerous real-world applications such as story visualization, game development asset design, advertising, and more. Current methods typically rely on multiple pre-existing images of the target character or involve labor-intensive manual processes. In this work, we propose a fully automated solution for consistent character generation, with the sole input being a text prompt. We introduce an iterative procedure that, at each stage, identifies a coherent set of images sharing a similar identity and extracts a more consistent identity from this set. Our quantitative analysis demonstrates that our method strikes a better balance between prompt alignment and identity consistency compared to the baseline methods, and these findings are reinforced by a user study. To conclude, we showcase several practical applications of our approach. Project page is available at https://omriavrahami.com/the-chosen-one 8 authors · Nov 16, 2023 7
9 Generating Illustrated Instructions We introduce the new task of generating Illustrated Instructions, i.e., visual instructions customized to a user's needs. We identify desiderata unique to this task, and formalize it through a suite of automatic and human evaluation metrics, designed to measure the validity, consistency, and efficacy of the generations. We combine the power of large language models (LLMs) together with strong text-to-image generation diffusion models to propose a simple approach called StackedDiffusion, which generates such illustrated instructions given text as input. The resulting model strongly outperforms baseline approaches and state-of-the-art multimodal LLMs; and in 30% of cases, users even prefer it to human-generated articles. Most notably, it enables various new and exciting applications far beyond what static articles on the web can provide, such as personalized instructions complete with intermediate steps and pictures in response to a user's individual situation. 3 authors · Dec 7, 2023
- Improving Yorùbá Diacritic Restoration Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology. 7 authors · Mar 23, 2020
3 Foundations of Large Language Models This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models. 2 authors · Jan 15
- Stock Market Prediction using Natural Language Processing -- A Survey The stock market is a network which provides a platform for almost all major economic transactions. While investing in the stock market is a good idea, investing in individual stocks may not be, especially for the casual investor. Smart stock-picking requires in-depth research and plenty of dedication. Predicting this stock value offers enormous arbitrage profit opportunities. This attractiveness of finding a solution has prompted researchers to find a way past problems like volatility, seasonality, and dependence on time. This paper surveys recent literature in the domain of natural language processing and machine learning techniques used to predict stock market movements. The main contributions of this paper include the sophisticated categorizations of many recent articles and the illustration of the recent trends of research in stock market prediction and its related areas. 2 authors · Aug 26, 2022
- Reformulating Unsupervised Style Transfer as Paraphrase Generation Modern NLP defines the task of style transfer as modifying the style of a given sentence without appreciably changing its semantics, which implies that the outputs of style transfer systems should be paraphrases of their inputs. However, many existing systems purportedly designed for style transfer inherently warp the input's meaning through attribute transfer, which changes semantic properties such as sentiment. In this paper, we reformulate unsupervised style transfer as a paraphrase generation problem, and present a simple methodology based on fine-tuning pretrained language models on automatically generated paraphrase data. Despite its simplicity, our method significantly outperforms state-of-the-art style transfer systems on both human and automatic evaluations. We also survey 23 style transfer papers and discover that existing automatic metrics can be easily gamed and propose fixed variants. Finally, we pivot to a more real-world style transfer setting by collecting a large dataset of 15M sentences in 11 diverse styles, which we use for an in-depth analysis of our system. 3 authors · Oct 12, 2020
49 PALP: Prompt Aligned Personalization of Text-to-Image Models Content creators often aim to create personalized images using personal subjects that go beyond the capabilities of conventional text-to-image models. Additionally, they may want the resulting image to encompass a specific location, style, ambiance, and more. Existing personalization methods may compromise personalization ability or the alignment to complex textual prompts. This trade-off can impede the fulfillment of user prompts and subject fidelity. We propose a new approach focusing on personalization methods for a single prompt to address this issue. We term our approach prompt-aligned personalization. While this may seem restrictive, our method excels in improving text alignment, enabling the creation of images with complex and intricate prompts, which may pose a challenge for current techniques. In particular, our method keeps the personalized model aligned with a target prompt using an additional score distillation sampling term. We demonstrate the versatility of our method in multi- and single-shot settings and further show that it can compose multiple subjects or use inspiration from reference images, such as artworks. We compare our approach quantitatively and qualitatively with existing baselines and state-of-the-art techniques. 8 authors · Jan 11, 2024 2
- ALMs: Authorial Language Models for Authorship Attribution In this paper, we introduce an authorship attribution method called Authorial Language Models (ALMs) that involves identifying the most likely author of a questioned document based on the perplexity of the questioned document calculated for a set of causal language models fine-tuned on the writings of a set of candidate author. We benchmarked ALMs against state-of-art-systems using the CCAT50 dataset and the Blogs50 datasets. We find that ALMs achieves a macro-average accuracy score of 83.6% on Blogs50, outperforming all other methods, and 74.9% on CCAT50, matching the performance of the best method. To assess the performance of ALMs on shorter texts, we also conducted text ablation testing. We found that to reach a macro-average accuracy of 70%, ALMs needs 40 tokens on Blogs50 and 400 tokens on CCAT50, while to reach 60% ALMs requires 20 tokens on Blogs50 and 70 tokens on CCAT50. 3 authors · Jan 22, 2024
1 MatSynth: A Modern PBR Materials Dataset We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or generation relied either on the same unique dataset, or on company-owned huge library of procedural materials. With this dataset we propose a significantly larger, more diverse, and higher resolution set of materials than previously publicly available. We carefully discuss the data collection process and demonstrate the benefits of this dataset on material acquisition and generation applications. The complete data further contains metadata with each material's origin, license, category, tags, creation method and, when available, descriptions and physical size, as well as 3M+ renderings of the augmented materials, in 1K, under various environment lightings. The MatSynth dataset is released through the project page at: https://www.gvecchio.com/matsynth. 2 authors · Jan 11, 2024
- Beyond Labels: Leveraging Deep Learning and LLMs for Content Metadata Content metadata plays a very important role in movie recommender systems as it provides valuable information about various aspects of a movie such as genre, cast, plot synopsis, box office summary, etc. Analyzing the metadata can help understand the user preferences to generate personalized recommendations and item cold starting. In this talk, we will focus on one particular type of metadata - genre labels. Genre labels associated with a movie or a TV series help categorize a collection of titles into different themes and correspondingly setting up the audience expectation. We present some of the challenges associated with using genre label information and propose a new way of examining the genre information that we call as the Genre Spectrum. The Genre Spectrum helps capture the various nuanced genres in a title and our offline and online experiments corroborate the effectiveness of the approach. Furthermore, we also talk about applications of LLMs in augmenting content metadata which could eventually be used to achieve effective organization of recommendations in user's 2-D home-grid. 3 authors · Sep 15, 2023
- Exploring the Limitations of Detecting Machine-Generated Text Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Systems proposed for the task often achieve high performance. However, humans and machines can produce text in different styles and in different domains, and it remains unclear whether machine generated-text detection models favour particular styles or domains. In this paper, we critically examine the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts. 6 authors · Jun 16, 2024
2 Evolution and Transformation of Scientific Knowledge over the Sphaera Corpus: A Network Study We investigated the evolution and transformation of scientific knowledge in the early modern period, analyzing more than 350 different editions of textbooks used for teaching astronomy in European universities from the late fifteenth century to mid-seventeenth century. These historical sources constitute the Sphaera Corpus. By examining different semantic relations among individual parts of each edition on record, we built a multiplex network consisting of six layers, as well as the aggregated network built from the superposition of all the layers. The network analysis reveals the emergence of five different communities. The contribution of each layer in shaping the communities and the properties of each community are studied. The most influential books in the corpus are found by calculating the average age of all the out-going and in-coming links for each book. A small group of editions is identified as a transmitter of knowledge as they bridge past knowledge to the future through a long temporal interval. Our analysis, moreover, identifies the most disruptive books. These books introduce new knowledge that is then adopted by almost all the books published afterwards until the end of the whole period of study. The historical research on the content of the identified books, as an empirical test, finally corroborates the results of all our analyses. 6 authors · Apr 1, 2020
- Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world. 3 authors · Oct 21, 2024
- Training Models to Extract Treatment Plans from Clinical Notes Using Contents of Sections with Headings Objective: Using natural language processing (NLP) to find sentences that state treatment plans in a clinical note, would automate plan extraction and would further enable their use in tools that help providers and care managers. However, as in the most NLP tasks on clinical text, creating gold standard to train and test NLP models is tedious and expensive. Fortuitously, sometimes but not always clinical notes contain sections with a heading that identifies the section as a plan. Leveraging contents of such labeled sections as a noisy training data, we assessed accuracy of NLP models trained with the data. Methods: We used common variations of plan headings and rule-based heuristics to find plan sections with headings in clinical notes, and we extracted sentences from them and formed a noisy training data of plan sentences. We trained Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models with the data. We measured accuracy of the trained models on the noisy dataset using ten-fold cross validation and separately on a set-aside manually annotated dataset. Results: About 13% of 117,730 clinical notes contained treatment plans sections with recognizable headings in the 1001 longitudinal patient records that were obtained from Cleveland Clinic under an IRB approval. We were able to extract and create a noisy training data of 13,492 plan sentences from the clinical notes. CNN achieved best F measures, 0.91 and 0.97 in the cross-validation and set-aside evaluation experiments respectively. SVM slightly underperformed with F measures of 0.89 and 0.96 in the same experiments. Conclusion: Our study showed that the training supervised learning models using noisy plan sentences was effective in identifying them in all clinical notes. More broadly, sections with informal headings in clinical notes can be a good source for generating effective training data. 3 authors · Jun 27, 2019
- Encoder-Decoder Framework for Interactive Free Verses with Generation with Controllable High-Quality Rhyming Composing poetry or lyrics involves several creative factors, but a challenging aspect of generation is the adherence to a more or less strict metric and rhyming pattern. To address this challenge specifically, previous work on the task has mainly focused on reverse language modeling, which brings the critical selection of each rhyming word to the forefront of each verse. On the other hand, reversing the word order requires that models be trained from scratch with this task-specific goal and cannot take advantage of transfer learning from a Pretrained Language Model (PLM). We propose a novel fine-tuning approach that prepends the rhyming word at the start of each lyric, which allows the critical rhyming decision to be made before the model commits to the content of the lyric (as during reverse language modeling), but maintains compatibility with the word order of regular PLMs as the lyric itself is still generated in left-to-right order. We conducted extensive experiments to compare this fine-tuning against the current state-of-the-art strategies for rhyming, finding that our approach generates more readable text and better rhyming capabilities. Furthermore, we furnish a high-quality dataset in English and 12 other languages, analyse the approach's feasibility in a multilingual context, provide extensive experimental results shedding light on good and bad practices for lyrics generation, and propose metrics to compare methods in the future. 8 authors · May 8, 2024
- RumourEval 2019: Determining Rumour Veracity and Support for Rumours This is the proposal for RumourEval-2019, which will run in early 2019 as part of that year's SemEval event. Since the first RumourEval shared task in 2017, interest in automated claim validation has greatly increased, as the dangers of "fake news" have become a mainstream concern. Yet automated support for rumour checking remains in its infancy. For this reason, it is important that a shared task in this area continues to provide a focus for effort, which is likely to increase. We therefore propose a continuation in which the veracity of further rumours is determined, and as previously, supportive of this goal, tweets discussing them are classified according to the stance they take regarding the rumour. Scope is extended compared with the first RumourEval, in that the dataset is substantially expanded to include Reddit as well as Twitter data, and additional languages are also included. 6 authors · Sep 18, 2018
- A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine. 7 authors · Jun 11, 2018
- Kapchinsky Memorial Book -- English Translation English translation of Russian book compiled to honor the memory of Ilya Mikhailovich Kapchinsky - To the 90th Birthday Collection of Memories. The idea for this publication belongs to Nikolai Vladimirovich Lazarev, a close collaborator of Ilya Mikhailovich Kapchinsky, head of one of the laboratories in the ITEP department that Kapchinsky headed. It was through the efforts of N.V. Lazarev that most of the materials in the collection were gathered. The main headings are: I. Little Known Heritage of I.M. Kapchinsky, II. Documents Joyful and Mournful, III. Memories of Family and Friends, Fragments of our life, IV. Memories of Colleagues of I.M. Kapchinsky, List of Scientific Papers, Afterword, Photos and Documents. 2 authors · Mar 1, 2023
- AdParaphrase: Paraphrase Dataset for Analyzing Linguistic Features toward Generating Attractive Ad Texts Effective linguistic choices that attract potential customers play crucial roles in advertising success. This study aims to explore the linguistic features of ad texts that influence human preferences. Although the creation of attractive ad texts is an active area of research, progress in understanding the specific linguistic features that affect attractiveness is hindered by several obstacles. First, human preferences are complex and influenced by multiple factors, including their content, such as brand names, and their linguistic styles, making analysis challenging. Second, publicly available ad text datasets that include human preferences are lacking, such as ad performance metrics and human feedback, which reflect people's interests. To address these problems, we present AdParaphrase, a paraphrase dataset that contains human preferences for pairs of ad texts that are semantically equivalent but differ in terms of wording and style. This dataset allows for preference analysis that focuses on the differences in linguistic features. Our analysis revealed that ad texts preferred by human judges have higher fluency, longer length, more nouns, and use of bracket symbols. Furthermore, we demonstrate that an ad text-generation model that considers these findings significantly improves the attractiveness of a given text. The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase. 5 authors · Feb 7
1 Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour. 4 authors · Jun 25, 2024
2 WikiMuTe: A web-sourced dataset of semantic descriptions for music audio Multi-modal deep learning techniques for matching free-form text with music have shown promising results in the field of Music Information Retrieval (MIR). Prior work is often based on large proprietary data while publicly available datasets are few and small in size. In this study, we present WikiMuTe, a new and open dataset containing rich semantic descriptions of music. The data is sourced from Wikipedia's rich catalogue of articles covering musical works. Using a dedicated text-mining pipeline, we extract both long and short-form descriptions covering a wide range of topics related to music content such as genre, style, mood, instrumentation, and tempo. To show the use of this data, we train a model that jointly learns text and audio representations and performs cross-modal retrieval. The model is evaluated on two tasks: tag-based music retrieval and music auto-tagging. The results show that while our approach has state-of-the-art performance on multiple tasks, but still observe a difference in performance depending on the data used for training. 4 authors · Dec 14, 2023
- ILiAD: An Interactive Corpus for Linguistic Annotated Data from Twitter Posts Social Media platforms have offered invaluable opportunities for linguistic research. The availability of up-to-date data, coming from any part in the world, and coming from natural contexts, has allowed researchers to study language in real time. One of the fields that has made great use of social media platforms is Corpus Linguistics. There is currently a wide range of projects which have been able to successfully create corpora from social media. In this paper, we present the development and deployment of a linguistic corpus from Twitter posts in English, coming from 26 news agencies and 27 individuals. The main goal was to create a fully annotated English corpus for linguistic analysis. We include information on morphology and syntax, as well as NLP features such as tokenization, lemmas, and n- grams. The information is presented through a range of powerful visualisations for users to explore linguistic patterns in the corpus. With this tool, we aim to contribute to the area of language technologies applied to linguistic research. 1 authors · Jul 22, 2024
- New Methods for Metadata Extraction from Scientific Literature Within the past few decades we have witnessed digital revolution, which moved scholarly communication to electronic media and also resulted in a substantial increase in its volume. Nowadays keeping track with the latest scientific achievements poses a major challenge for the researchers. Scientific information overload is a severe problem that slows down scholarly communication and knowledge propagation across the academia. Modern research infrastructures facilitate studying scientific literature by providing intelligent search tools, proposing similar and related documents, visualizing citation and author networks, assessing the quality and impact of the articles, and so on. In order to provide such high quality services the system requires the access not only to the text content of stored documents, but also to their machine-readable metadata. Since in practice good quality metadata is not always available, there is a strong demand for a reliable automatic method of extracting machine-readable metadata directly from source documents. This research addresses these problems by proposing an automatic, accurate and flexible algorithm for extracting wide range of metadata directly from scientific articles in born-digital form. Extracted information includes basic document metadata, structured full text and bibliography section. Designed as a universal solution, proposed algorithm is able to handle a vast variety of publication layouts with high precision and thus is well-suited for analyzing heterogeneous document collections. This was achieved by employing supervised and unsupervised machine-learning algorithms trained on large, diverse datasets. The evaluation we conducted showed good performance of proposed metadata extraction algorithm. The comparison with other similar solutions also proved our algorithm performs better than competition for most metadata types. 1 authors · Oct 27, 2017
1 I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help 6 authors · Jul 20, 2024
17 MusicRL: Aligning Music Generation to Human Preferences We propose MusicRL, the first music generation system finetuned from human feedback. Appreciation of text-to-music models is particularly subjective since the concept of musicality as well as the specific intention behind a caption are user-dependent (e.g. a caption such as "upbeat work-out music" can map to a retro guitar solo or a techno pop beat). Not only this makes supervised training of such models challenging, but it also calls for integrating continuous human feedback in their post-deployment finetuning. MusicRL is a pretrained autoregressive MusicLM (Agostinelli et al., 2023) model of discrete audio tokens finetuned with reinforcement learning to maximise sequence-level rewards. We design reward functions related specifically to text-adherence and audio quality with the help from selected raters, and use those to finetune MusicLM into MusicRL-R. We deploy MusicLM to users and collect a substantial dataset comprising 300,000 pairwise preferences. Using Reinforcement Learning from Human Feedback (RLHF), we train MusicRL-U, the first text-to-music model that incorporates human feedback at scale. Human evaluations show that both MusicRL-R and MusicRL-U are preferred to the baseline. Ultimately, MusicRL-RU combines the two approaches and results in the best model according to human raters. Ablation studies shed light on the musical attributes influencing human preferences, indicating that text adherence and quality only account for a part of it. This underscores the prevalence of subjectivity in musical appreciation and calls for further involvement of human listeners in the finetuning of music generation models. 14 authors · Feb 6, 2024 1
- Benchmarking Abstractive Summarisation: A Dataset of Human-authored Summaries of Norwegian News Articles We introduce a dataset of high-quality human-authored summaries of news articles in Norwegian. The dataset is intended for benchmarking the abstractive summarisation capabilities of generative language models. Each document in the dataset is provided with three different candidate gold-standard summaries written by native Norwegian speakers, and all summaries are provided in both of the written variants of Norwegian -- Bokm{\aa}l and Nynorsk. The paper describes details on the data creation effort as well as an evaluation of existing open LLMs for Norwegian on the dataset. We also provide insights from a manual human evaluation, comparing human-authored to model-generated summaries. Our results indicate that the dataset provides a challenging LLM benchmark for Norwegian summarisation capabilities 5 authors · Jan 13
1 Can Humans Identify Domains? Textual domain is a crucial property within the Natural Language Processing (NLP) community due to its effects on downstream model performance. The concept itself is, however, loosely defined and, in practice, refers to any non-typological property, such as genre, topic, medium or style of a document. We investigate the core notion of domains via human proficiency in identifying related intrinsic textual properties, specifically the concepts of genre (communicative purpose) and topic (subject matter). We publish our annotations in *TGeGUM*: A collection of 9.1k sentences from the GUM dataset (Zeldes, 2017) with single sentence and larger context (i.e., prose) annotations for one of 11 genres (source type), and its topic/subtopic as per the Dewey Decimal library classification system (Dewey, 1979), consisting of 10/100 hierarchical topics of increased granularity. Each instance is annotated by three annotators, for a total of 32.7k annotations, allowing us to examine the level of human disagreement and the relative difficulty of each annotation task. With a Fleiss' kappa of at most 0.53 on the sentence level and 0.66 at the prose level, it is evident that despite the ubiquity of domains in NLP, there is little human consensus on how to define them. By training classifiers to perform the same task, we find that this uncertainty also extends to NLP models. 6 authors · Apr 2, 2024
12 The Multimodal Universe: Enabling Large-Scale Machine Learning with 100TB of Astronomical Scientific Data We present the MULTIMODAL UNIVERSE, a large-scale multimodal dataset of scientific astronomical data, compiled specifically to facilitate machine learning research. Overall, the MULTIMODAL UNIVERSE contains hundreds of millions of astronomical observations, constituting 100\,TB of multi-channel and hyper-spectral images, spectra, multivariate time series, as well as a wide variety of associated scientific measurements and "metadata". In addition, we include a range of benchmark tasks representative of standard practices for machine learning methods in astrophysics. This massive dataset will enable the development of large multi-modal models specifically targeted towards scientific applications. All codes used to compile the MULTIMODAL UNIVERSE and a description of how to access the data is available at https://github.com/MultimodalUniverse/MultimodalUniverse 29 authors · Dec 3, 2024
1 FMA: A Dataset For Music Analysis We introduce the Free Music Archive (FMA), an open and easily accessible dataset suitable for evaluating several tasks in MIR, a field concerned with browsing, searching, and organizing large music collections. The community's growing interest in feature and end-to-end learning is however restrained by the limited availability of large audio datasets. The FMA aims to overcome this hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a hierarchical taxonomy of 161 genres. It provides full-length and high-quality audio, pre-computed features, together with track- and user-level metadata, tags, and free-form text such as biographies. We here describe the dataset and how it was created, propose a train/validation/test split and three subsets, discuss some suitable MIR tasks, and evaluate some baselines for genre recognition. Code, data, and usage examples are available at https://github.com/mdeff/fma 4 authors · Dec 6, 2016
2 Disentangling Writer and Character Styles for Handwriting Generation Training machines to synthesize diverse handwritings is an intriguing task. Recently, RNN-based methods have been proposed to generate stylized online Chinese characters. However, these methods mainly focus on capturing a person's overall writing style, neglecting subtle style inconsistencies between characters written by the same person. For example, while a person's handwriting typically exhibits general uniformity (e.g., glyph slant and aspect ratios), there are still small style variations in finer details (e.g., stroke length and curvature) of characters. In light of this, we propose to disentangle the style representations at both writer and character levels from individual handwritings to synthesize realistic stylized online handwritten characters. Specifically, we present the style-disentangled Transformer (SDT), which employs two complementary contrastive objectives to extract the style commonalities of reference samples and capture the detailed style patterns of each sample, respectively. Extensive experiments on various language scripts demonstrate the effectiveness of SDT. Notably, our empirical findings reveal that the two learned style representations provide information at different frequency magnitudes, underscoring the importance of separate style extraction. Our source code is public at: https://github.com/dailenson/SDT. 7 authors · Mar 26, 2023
- Lyrics Transcription for Humans: A Readability-Aware Benchmark Writing down lyrics for human consumption involves not only accurately capturing word sequences, but also incorporating punctuation and formatting for clarity and to convey contextual information. This includes song structure, emotional emphasis, and contrast between lead and background vocals. While automatic lyrics transcription (ALT) systems have advanced beyond producing unstructured strings of words and are able to draw on wider context, ALT benchmarks have not kept pace and continue to focus exclusively on words. To address this gap, we introduce Jam-ALT, a comprehensive lyrics transcription benchmark. The benchmark features a complete revision of the JamendoLyrics dataset, in adherence to industry standards for lyrics transcription and formatting, along with evaluation metrics designed to capture and assess the lyric-specific nuances, laying the foundation for improving the readability of lyrics. We apply the benchmark to recent transcription systems and present additional error analysis, as well as an experimental comparison with a classical music dataset. 4 authors · Jul 30, 2024
1 TaleStream: Supporting Story Ideation with Trope Knowledge Story ideation is a critical part of the story-writing process. It is challenging to support computationally due to its exploratory and subjective nature. Tropes, which are recurring narrative elements across stories, are essential in stories as they shape the structure of narratives and our understanding of them. In this paper, we propose to use tropes as an intermediate representation of stories to approach story ideation. We present TaleStream, a canvas system that uses tropes as building blocks of stories while providing steerable suggestions of story ideas in the form of tropes. Our trope suggestion methods leverage data from the tvtropes.org wiki. We find that 97% of the time, trope suggestions generated by our methods provide better story ideation materials than random tropes. Our system evaluation suggests that TaleStream can support writers' creative flow and greatly facilitates story development. Tropes, as a rich lexicon of narratives with available examples, play a key role in TaleStream and hold promise for story-creation support systems. 6 authors · Sep 7, 2023
- NLP in FinTech Applications: Past, Present and Future Financial Technology (FinTech) is one of the worldwide rapidly-rising topics in the past five years according to the statistics of FinTech from Google Trends. In this position paper, we focus on the researches applying natural language processing (NLP) technologies in the finance domain. Our goal is to indicate the position we are now and provide the blueprint for future researches. We go through the application scenarios from three aspects including Know Your Customer (KYC), Know Your Product (KYP), and Satisfy Your Customer (SYC). Both formal documents and informal textual data are analyzed to understand corporate customers and personal customers. Furthermore, we talk over how to dynamically update the features of products from the prospect and the risk points of view. Finally, we discuss satisfying the customers in both B2C and C2C business models. After summarizing the past and the recent challenges, we highlight several promising future research directions in the trend of FinTech and the open finance tendency. 3 authors · May 4, 2020
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science". 14 authors · Feb 7
- [Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus After last year's successful BabyLM Challenge, the competition will be hosted again in 2024/2025. The overarching goals of the challenge remain the same; however, some of the competition rules will be different. The big changes for this year's competition are as follows: First, we replace the loose track with a paper track, which allows (for example) non-model-based submissions, novel cognitively-inspired benchmarks, or analysis techniques. Second, we are relaxing the rules around pretraining data, and will now allow participants to construct their own datasets provided they stay within the 100M-word or 10M-word budget. Third, we introduce a multimodal vision-and-language track, and will release a corpus of 50% text-only and 50% image-text multimodal data as a starting point for LM model training. The purpose of this CfP is to provide rules for this year's challenge, explain these rule changes and their rationale in greater detail, give a timeline of this year's competition, and provide answers to frequently asked questions from last year's challenge. 10 authors · Apr 9, 2024
1 Text Style Transfer Evaluation Using Large Language Models Evaluating Text Style Transfer (TST) is a complex task due to its multifaceted nature. The quality of the generated text is measured based on challenging factors, such as style transfer accuracy, content preservation, and overall fluency. While human evaluation is considered to be the gold standard in TST assessment, it is costly and often hard to reproduce. Therefore, automated metrics are prevalent in these domains. Nevertheless, it remains unclear whether these automated metrics correlate with human evaluations. Recent strides in Large Language Models (LLMs) have showcased their capacity to match and even exceed average human performance across diverse, unseen tasks. This suggests that LLMs could be a feasible alternative to human evaluation and other automated metrics in TST evaluation. We compare the results of different LLMs in TST using multiple input prompts. Our findings highlight a strong correlation between (even zero-shot) prompting and human evaluation, showing that LLMs often outperform traditional automated metrics. Furthermore, we introduce the concept of prompt ensembling, demonstrating its ability to enhance the robustness of TST evaluation. This research contributes to the ongoing evaluation of LLMs in diverse tasks, offering insights into successful outcomes and areas of limitation. 4 authors · Aug 25, 2023
- Neural Poetry: Learning to Generate Poems using Syllables Motivated by the recent progresses on machine learning-based models that learn artistic styles, in this paper we focus on the problem of poem generation. This is a challenging task in which the machine has to capture the linguistic features that strongly characterize a certain poet, as well as the semantics of the poet's production, that are influenced by his personal experiences and by his literary background. Since poetry is constructed using syllables, that regulate the form and structure of poems, we propose a syllable-based neural language model, and we describe a poem generation mechanism that is designed around the poet style, automatically selecting the most representative generations. The poetic work of a target author is usually not enough to successfully train modern deep neural networks, so we propose a multi-stage procedure that exploits non-poetic works of the same author, and also other publicly available huge corpora to learn syntax and grammar of the target language. We focus on the Italian poet Dante Alighieri, widely famous for his Divine Comedy. A quantitative and qualitative experimental analysis of the generated tercets is reported, where we included expert judges with strong background in humanistic studies. The generated tercets are frequently considered to be real by a generic population of judges, with relative difference of 56.25\% with respect to the ones really authored by Dante, and expert judges perceived Dante's style and rhymes in the generated text. 3 authors · Aug 23, 2019
- What time is it? Temporal Analysis of Novels Recognizing the flow of time in a story is a crucial aspect of understanding it. Prior work related to time has primarily focused on identifying temporal expressions or relative sequencing of events, but here we propose computationally annotating each line of a book with wall clock times, even in the absence of explicit time-descriptive phrases. To do so, we construct a data set of hourly time phrases from 52,183 fictional books. We then construct a time-of-day classification model that achieves an average error of 2.27 hours. Furthermore, we show that by analyzing a book in whole using dynamic programming of breakpoints, we can roughly partition a book into segments that each correspond to a particular time-of-day. This approach improves upon baselines by over two hours. Finally, we apply our model to a corpus of literature categorized by different periods in history, to show interesting trends of hourly activity throughout the past. Among several observations we find that the fraction of events taking place past 10 P.M jumps past 1880 - coincident with the advent of the electric light bulb and city lights. 3 authors · Nov 8, 2020
- Improving Wikipedia Verifiability with AI Verifiability is a core content policy of Wikipedia: claims that are likely to be challenged need to be backed by citations. There are millions of articles available online and thousands of new articles are released each month. For this reason, finding relevant sources is a difficult task: many claims do not have any references that support them. Furthermore, even existing citations might not support a given claim or become obsolete once the original source is updated or deleted. Hence, maintaining and improving the quality of Wikipedia references is an important challenge and there is a pressing need for better tools to assist humans in this effort. Here, we show that the process of improving references can be tackled with the help of artificial intelligence (AI). We develop a neural network based system, called Side, to identify Wikipedia citations that are unlikely to support their claims, and subsequently recommend better ones from the web. We train this model on existing Wikipedia references, therefore learning from the contributions and combined wisdom of thousands of Wikipedia editors. Using crowd-sourcing, we observe that for the top 10% most likely citations to be tagged as unverifiable by our system, humans prefer our system's suggested alternatives compared to the originally cited reference 70% of the time. To validate the applicability of our system, we built a demo to engage with the English-speaking Wikipedia community and find that Side's first citation recommendation collects over 60% more preferences than existing Wikipedia citations for the same top 10% most likely unverifiable claims according to Side. Our results indicate that an AI-based system could be used, in tandem with humans, to improve the verifiability of Wikipedia. More generally, we hope that our work can be used to assist fact checking efforts and increase the general trustworthiness of information online. 13 authors · Jul 8, 2022
3 Airavata: Introducing Hindi Instruction-tuned LLM We announce the initial release of "Airavata," an instruction-tuned LLM for Hindi. Airavata was created by fine-tuning OpenHathi with diverse, instruction-tuning Hindi datasets to make it better suited for assistive tasks. Along with the model, we also share the IndicInstruct dataset, which is a collection of diverse instruction-tuning datasets to enable further research for Indic LLMs. Additionally, we present evaluation benchmarks and a framework for assessing LLM performance across tasks in Hindi. Currently, Airavata supports Hindi, but we plan to expand this to all 22 scheduled Indic languages. You can access all artifacts at https://ai4bharat.github.io/airavata. 11 authors · Jan 26, 2024 2
- HWD: A Novel Evaluation Score for Styled Handwritten Text Generation Styled Handwritten Text Generation (Styled HTG) is an important task in document analysis, aiming to generate text images with the handwriting of given reference images. In recent years, there has been significant progress in the development of deep learning models for tackling this task. Being able to measure the performance of HTG models via a meaningful and representative criterion is key for fostering the development of this research topic. However, despite the current adoption of scores for natural image generation evaluation, assessing the quality of generated handwriting remains challenging. In light of this, we devise the Handwriting Distance (HWD), tailored for HTG evaluation. In particular, it works in the feature space of a network specifically trained to extract handwriting style features from the variable-lenght input images and exploits a perceptual distance to compare the subtle geometric features of handwriting. Through extensive experimental evaluation on different word-level and line-level datasets of handwritten text images, we demonstrate the suitability of the proposed HWD as a score for Styled HTG. The pretrained model used as backbone will be released to ease the adoption of the score, aiming to provide a valuable tool for evaluating HTG models and thus contributing to advancing this important research area. 4 authors · Oct 31, 2023
- Are You Robert or RoBERTa? Deceiving Online Authorship Attribution Models Using Neural Text Generators Recently, there has been a rise in the development of powerful pre-trained natural language models, including GPT-2, Grover, and XLM. These models have shown state-of-the-art capabilities towards a variety of different NLP tasks, including question answering, content summarisation, and text generation. Alongside this, there have been many studies focused on online authorship attribution (AA). That is, the use of models to identify the authors of online texts. Given the power of natural language models in generating convincing texts, this paper examines the degree to which these language models can generate texts capable of deceiving online AA models. Experimenting with both blog and Twitter data, we utilise GPT-2 language models to generate texts using the existing posts of online users. We then examine whether these AI-based text generators are capable of mimicking authorial style to such a degree that they can deceive typical AA models. From this, we find that current AI-based text generators are able to successfully mimic authorship, showing capabilities towards this on both datasets. Our findings, in turn, highlight the current capacity of powerful natural language models to generate original online posts capable of mimicking authorial style sufficiently to deceive popular AA methods; a key finding given the proposed role of AA in real world applications such as spam-detection and forensic investigation. 3 authors · Mar 18, 2022
- Commonly Interesting Images Images tell stories, trigger emotions, and let us recall memories -- they make us think. Thus, they have the ability to attract and hold one's attention, which is the definition of being "interesting". Yet, the appeal of an image is highly subjective. Looking at the image of my son taking his first steps will always bring me back to this emotional moment, while it is just a blurry, quickly taken snapshot to most others. Preferences vary widely: some adore cats, others are dog enthusiasts, and a third group may not be fond of either. We argue that every image can be interesting to a particular observer under certain circumstances. This work particularly emphasizes subjective preferences. However, our analysis of 2.5k image collections from diverse users of the photo-sharing platform Flickr reveals that specific image characteristics make them commonly more interesting. For instance, images, including professionally taken landscapes, appeal broadly due to their aesthetic qualities. In contrast, subjectively interesting images, such as those depicting personal or niche community events, resonate on a more individual level, often evoking personal memories and emotions. 2 authors · Sep 25, 2024
- Icelandic Parallel Abstracts Corpus We present a new Icelandic-English parallel corpus, the Icelandic Parallel Abstracts Corpus (IPAC), composed of abstracts from student theses and dissertations. The texts were collected from the Skemman repository which keeps records of all theses, dissertations and final projects from students at Icelandic universities. The corpus was aligned based on sentence-level BLEU scores, in both translation directions, from NMT models using Bleualign. The result is a corpus of 64k sentence pairs from over 6 thousand parallel abstracts. 2 authors · Aug 11, 2021
- Russian Web Tables: A Public Corpus of Web Tables for Russian Language Based on Wikipedia Corpora that contain tabular data such as WebTables are a vital resource for the academic community. Essentially, they are the backbone of any modern research in information management. They are used for various tasks of data extraction, knowledge base construction, question answering, column semantic type detection and many other. Such corpora are useful not only as a source of data, but also as a base for building test datasets. So far, there were no such corpora for the Russian language and this seriously hindered research in the aforementioned areas. In this paper, we present the first corpus of Web tables created specifically out of Russian language material. It was built via a special toolkit we have developed to crawl the Russian Wikipedia. Both the corpus and the toolkit are open-source and publicly available. Finally, we present a short study that describes Russian Wikipedia tables and their statistics. 3 authors · Oct 3, 2022
- Towards an Open Platform for Legal Information Recent advances in the area of legal information systems have led to a variety of applications that promise support in processing and accessing legal documents. Unfortunately, these applications have various limitations, e.g., regarding scope or extensibility. Furthermore, we do not observe a trend towards open access in digital libraries in the legal domain as we observe in other domains, e.g., economics of computer science. To improve open access in the legal domain, we present our approach for an open source platform to transparently process and access Legal Open Data. This enables the sustainable development of legal applications by offering a single technology stack. Moreover, the approach facilitates the development and deployment of new technologies. As proof of concept, we implemented six technologies and generated metadata for more than 250,000 German laws and court decisions. Thus, we can provide users of our platform not only access to legal documents, but also the contained information. 3 authors · May 27, 2020
- PatentEdits: Framing Patent Novelty as Textual Entailment A patent must be deemed novel and non-obvious in order to be granted by the US Patent Office (USPTO). If it is not, a US patent examiner will cite the prior work, or prior art, that invalidates the novelty and issue a non-final rejection. Predicting what claims of the invention should change given the prior art is an essential and crucial step in securing invention rights, yet has not been studied before as a learnable task. In this work we introduce the PatentEdits dataset, which contains 105K examples of successful revisions that overcome objections to novelty. We design algorithms to label edits sentence by sentence, then establish how well these edits can be predicted with large language models (LLMs). We demonstrate that evaluating textual entailment between cited references and draft sentences is especially effective in predicting which inventive claims remained unchanged or are novel in relation to prior art. 3 authors · Nov 20, 2024
- Functional Map of the World We present a new dataset, Functional Map of the World (fMoW), which aims to inspire the development of machine learning models capable of predicting the functional purpose of buildings and land use from temporal sequences of satellite images and a rich set of metadata features. The metadata provided with each image enables reasoning about location, time, sun angles, physical sizes, and other features when making predictions about objects in the image. Our dataset consists of over 1 million images from over 200 countries. For each image, we provide at least one bounding box annotation containing one of 63 categories, including a "false detection" category. We present an analysis of the dataset along with baseline approaches that reason about metadata and temporal views. Our data, code, and pretrained models have been made publicly available. 4 authors · Nov 21, 2017
- Sāmayik: A Benchmark and Dataset for English-Sanskrit Translation We release S\={a}mayik, a dataset of around 53,000 parallel English-Sanskrit sentences, written in contemporary prose. Sanskrit is a classical language still in sustenance and has a rich documented heritage. However, due to the limited availability of digitized content, it still remains a low-resource language. Existing Sanskrit corpora, whether monolingual or bilingual, have predominantly focused on poetry and offer limited coverage of contemporary written materials. S\={a}mayik is curated from a diverse range of domains, including language instruction material, textual teaching pedagogy, and online tutorials, among others. It stands out as a unique resource that specifically caters to the contemporary usage of Sanskrit, with a primary emphasis on prose writing. Translation models trained on our dataset demonstrate statistically significant improvements when translating out-of-domain contemporary corpora, outperforming models trained on older classical-era poetry datasets. Finally, we also release benchmark models by adapting four multilingual pre-trained models, three of them have not been previously exposed to Sanskrit for translating between English and Sanskrit while one of them is multi-lingual pre-trained translation model including English and Sanskrit. The dataset and source code is present at https://github.com/ayushbits/saamayik. 7 authors · May 23, 2023
12 PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization In a joint vision-language space, a text feature (e.g., from "a photo of a dog") could effectively represent its relevant image features (e.g., from dog photos). Inspired by this, we propose PromptStyler which simulates various distribution shifts in the joint space by synthesizing diverse styles via prompts without using any images to deal with source-free domain generalization. Our method learns to generate a variety of style features (from "a S* style of a") via learnable style word vectors for pseudo-words S*. To ensure that learned styles do not distort content information, we force style-content features (from "a S* style of a [class]") to be located nearby their corresponding content features (from "[class]") in the joint vision-language space. After learning style word vectors, we train a linear classifier using synthesized style-content features. PromptStyler achieves the state of the art on PACS, VLCS, OfficeHome and DomainNet, although it does not require any images and takes just ~30 minutes for training using a single GPU. 5 authors · Jul 27, 2023
1 Yo'LLaVA: Your Personalized Language and Vision Assistant Large Multimodal Models (LMMs) have shown remarkable capabilities across a variety of tasks (e.g., image captioning, visual question answering). While broad, their knowledge remains generic (e.g., recognizing a dog), and they are unable to handle personalized subjects (e.g., recognizing a user's pet dog). Human reasoning, in contrast, typically operates within the context of specific subjects in our surroundings. For example, one might ask, "What should I buy for my dog's birthday?"; as opposed to a generic inquiry about "What should I buy for a dog's birthday?". Similarly, when looking at a friend's image, the interest lies in seeing their activities (e.g., "my friend is holding a cat"), rather than merely observing generic human actions (e.g., "a man is holding a cat"). In this paper, we introduce the novel task of personalizing LMMs, so that they can have conversations about a specific subject. We propose Yo'LLaVA, which learns to embed a personalized subject into a set of latent tokens given a handful of example images of the subject. Our qualitative and quantitative analyses reveal that Yo'LLaVA can learn the concept more efficiently using fewer tokens and more effectively encode the visual attributes compared to strong prompting baselines (e.g., LLaVA). 6 authors · Jun 13, 2024
28 Text-to-Sticker: Style Tailoring Latent Diffusion Models for Human Expression We introduce Style Tailoring, a recipe to finetune Latent Diffusion Models (LDMs) in a distinct domain with high visual quality, prompt alignment and scene diversity. We choose sticker image generation as the target domain, as the images significantly differ from photorealistic samples typically generated by large-scale LDMs. We start with a competent text-to-image model, like Emu, and show that relying on prompt engineering with a photorealistic model to generate stickers leads to poor prompt alignment and scene diversity. To overcome these drawbacks, we first finetune Emu on millions of sticker-like images collected using weak supervision to elicit diversity. Next, we curate human-in-the-loop (HITL) Alignment and Style datasets from model generations, and finetune to improve prompt alignment and style alignment respectively. Sequential finetuning on these datasets poses a tradeoff between better style alignment and prompt alignment gains. To address this tradeoff, we propose a novel fine-tuning method called Style Tailoring, which jointly fits the content and style distribution and achieves best tradeoff. Evaluation results show our method improves visual quality by 14%, prompt alignment by 16.2% and scene diversity by 15.3%, compared to prompt engineering the base Emu model for stickers generation. 17 authors · Nov 16, 2023 1
11 StyleRemix: Interpretable Authorship Obfuscation via Distillation and Perturbation of Style Elements Authorship obfuscation, rewriting a text to intentionally obscure the identity of the author, is an important but challenging task. Current methods using large language models (LLMs) lack interpretability and controllability, often ignoring author-specific stylistic features, resulting in less robust performance overall. To address this, we develop StyleRemix, an adaptive and interpretable obfuscation method that perturbs specific, fine-grained style elements of the original input text. StyleRemix uses pre-trained Low Rank Adaptation (LoRA) modules to rewrite an input specifically along various stylistic axes (e.g., formality and length) while maintaining low computational cost. StyleRemix outperforms state-of-the-art baselines and much larger LLMs in a variety of domains as assessed by both automatic and human evaluation. Additionally, we release AuthorMix, a large set of 30K high-quality, long-form texts from a diverse set of 14 authors and 4 domains, and DiSC, a parallel corpus of 1,500 texts spanning seven style axes in 16 unique directions 6 authors · Aug 28, 2024 4
- Delving into ChatGPT usage in academic writing through excess vocabulary Recent large language models (LLMs) can generate and revise text with human-level performance, and have been widely commercialized in systems like ChatGPT. These models come with clear limitations: they can produce inaccurate information, reinforce existing biases, and be easily misused. Yet, many scientists have been using them to assist their scholarly writing. How wide-spread is LLM usage in the academic literature currently? To answer this question, we use an unbiased, large-scale approach, free from any assumptions on academic LLM usage. We study vocabulary changes in 14 million PubMed abstracts from 2010-2024, and show how the appearance of LLMs led to an abrupt increase in the frequency of certain style words. Our analysis based on excess words usage suggests that at least 10% of 2024 abstracts were processed with LLMs. This lower bound differed across disciplines, countries, and journals, and was as high as 30% for some PubMed sub-corpora. We show that the appearance of LLM-based writing assistants has had an unprecedented impact in the scientific literature, surpassing the effect of major world events such as the Covid pandemic. 4 authors · Jun 11, 2024
- Comparative Study and Framework for Automated Summariser Evaluation: LangChain and Hybrid Algorithms Automated Essay Score (AES) is proven to be one of the cutting-edge technologies. Scoring techniques are used for various purposes. Reliable scores are calculated based on influential variables. Such variables can be computed by different methods based on the domain. The research is concentrated on the user's understanding of a given topic. The analysis is based on a scoring index by using Large Language Models. The user can then compare and contrast the understanding of a topic that they recently learned. The results are then contributed towards learning analytics and progression is made for enhancing the learning ability. In this research, the focus is on summarizing a PDF document and gauging a user's understanding of its content. The process involves utilizing a Langchain tool to summarize the PDF and extract the essential information. By employing this technique, the research aims to determine how well the user comprehends the summarized content. 4 authors · Oct 4, 2023
- Doctors Handwritten Prescription Recognition System In Multi Language Using Deep Learning Doctors typically write in incomprehensible handwriting, making it difficult for both the general public and some pharmacists to understand the medications they have prescribed. It is not ideal for them to write the prescription quietly and methodically because they will be dealing with dozens of patients every day and will be swamped with work.As a result, their handwriting is illegible. This may result in reports or prescriptions consisting of short forms and cursive writing that a typical person or pharmacist won't be able to read properly, which will cause prescribed medications to be misspelled. However, some individuals are accustomed to writing prescriptions in regional languages because we all live in an area with a diversity of regional languages. It makes analyzing the content much more challenging. So, in this project, we'll use a recognition system to build a tool that can translate the handwriting of physicians in any language. This system will be made into an application which is fully autonomous in functioning. As the user uploads the prescription image the program will pre-process the image by performing image pre-processing, and word segmentations initially before processing the image for training. And it will be done for every language we require the model to detect. And as of the deduction model will be made using deep learning techniques including CNN, RNN, and LSTM, which are utilized to train the model. To match words from various languages that will be written in the system, Unicode will be used. Furthermore, fuzzy search and market basket analysis are employed to offer an end result that will be optimized from the pharmaceutical database and displayed to the user as a structured output. 6 authors · Oct 20, 2022
- Latent Space Interpretation for Stylistic Analysis and Explainable Authorship Attribution Recent state-of-the-art authorship attribution methods learn authorship representations of texts in a latent, non-interpretable space, hindering their usability in real-world applications. Our work proposes a novel approach to interpreting these learned embeddings by identifying representative points in the latent space and utilizing LLMs to generate informative natural language descriptions of the writing style of each point. We evaluate the alignment of our interpretable space with the latent one and find that it achieves the best prediction agreement compared to other baselines. Additionally, we conduct a human evaluation to assess the quality of these style descriptions, validating their utility as explanations for the latent space. Finally, we investigate whether human performance on the challenging AA task improves when aided by our system's explanations, finding an average improvement of around +20% in accuracy. 6 authors · Sep 11, 2024
- Making Short-Form Videos Accessible with Hierarchical Video Summaries Short videos on platforms such as TikTok, Instagram Reels, and YouTube Shorts (i.e. short-form videos) have become a primary source of information and entertainment. Many short-form videos are inaccessible to blind and low vision (BLV) viewers due to their rapid visual changes, on-screen text, and music or meme-audio overlays. In our formative study, 7 BLV viewers who regularly watched short-form videos reported frequently skipping such inaccessible content. We present ShortScribe, a system that provides hierarchical visual summaries of short-form videos at three levels of detail to support BLV viewers in selecting and understanding short-form videos. ShortScribe allows BLV users to navigate between video descriptions based on their level of interest. To evaluate ShortScribe, we assessed description accuracy and conducted a user study with 10 BLV participants comparing ShortScribe to a baseline interface. When using ShortScribe, participants reported higher comprehension and provided more accurate summaries of video content. 6 authors · Feb 15, 2024
- Étude cognitive des processus de construction d'une requête dans un système de gestion de connaissances médicales This article presents the Cogni-CISMeF project, which aims at improving medical information search in the CISMeF system (Catalog and Index of French-language health resources) by including a conversational agent to interact with the user in natural language. To study the cognitive processes involved during the information search, a bottom-up methodology was adopted. Experimentation has been set up to obtain human dialogs between a user (playing the role of patient) dealing with medical information search and a CISMeF expert refining the request. The analysis of these dialogs underlined the use of discursive evidence: vocabulary, reformulation, implicit or explicit expression of user intentions, conversational sequences, etc. A model of artificial agent is proposed. It leads the user in its information search by proposing to him examples, assistance and choices. This model was implemented and integrated in the CISMeF system. ---- Cet article d\'ecrit le projet Cogni-CISMeF qui propose un module de dialogue Homme-Machine \`a int\'egrer dans le syst\`eme d'indexation de connaissances m\'edicales CISMeF (Catalogue et Index des Sites M\'edicaux Francophones). Nous avons adopt\'e une d\'emarche de mod\'elisation cognitive en proc\'edant \`a un recueil de corpus de dialogues entre un utilisateur (jouant le r\^ole d'un patient) d\'esirant une information m\'edicale et un expert CISMeF af inant cette demande pour construire la requ\^ete. Nous avons analys\'e la structure des dialogues ainsi obtenus et avons \'etudi\'e un certain nombre d'indices discursifs : vocabulaire employ\'e, marques de reformulation, commentaires m\'eta et \'epilinguistiques, expression implicite ou explicite des intentions de l'utilisateur, encha\^inement conversationnel, etc. De cette analyse, nous avons construit un mod\`ele d'agent artificiel dot\'e de capacit\'es cognitives capables d'aider l'utilisateur dans sa t\^ache de recherche d'information. Ce mod\`ele a \'et\'e impl\'ement\'e et int\'egr\'e dans le syst\`eme CISMeF. 5 authors · Feb 10, 2014
13 DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models Recent progresses in large-scale text-to-image models have yielded remarkable accomplishments, finding various applications in art domain. However, expressing unique characteristics of an artwork (e.g. brushwork, colortone, or composition) with text prompts alone may encounter limitations due to the inherent constraints of verbal description. To this end, we introduce DreamStyler, a novel framework designed for artistic image synthesis, proficient in both text-to-image synthesis and style transfer. DreamStyler optimizes a multi-stage textual embedding with a context-aware text prompt, resulting in prominent image quality. In addition, with content and style guidance, DreamStyler exhibits flexibility to accommodate a range of style references. Experimental results demonstrate its superior performance across multiple scenarios, suggesting its promising potential in artistic product creation. 7 authors · Sep 13, 2023 1
- AI vs. Human -- Differentiation Analysis of Scientific Content Generation Recent neural language models have taken a significant step forward in producing remarkably controllable, fluent, and grammatical text. Although studies have found that AI-generated text is not distinguishable from human-written text for crowd-sourcing workers, there still exist errors in AI-generated text which are even subtler and harder to spot. We primarily focus on the scenario in which scientific AI writing assistant is deeply involved. First, we construct a feature description framework to distinguish between AI-generated text and human-written text from syntax, semantics, and pragmatics based on the human evaluation. Then we utilize the features, i.e., writing style, coherence, consistency, and argument logistics, from the proposed framework to analyze two types of content. Finally, we adopt several publicly available methods to investigate the gap of between AI-generated scientific text and human-written scientific text by AI-generated scientific text detection models. The results suggest that while AI has the potential to generate scientific content that is as accurate as human-written content, there is still a gap in terms of depth and overall quality. The AI-generated scientific content is more likely to contain errors in factual issues. We find that there exists a "writing style" gap between AI-generated scientific text and human-written scientific text. Based on the analysis result, we summarize a series of model-agnostic and distribution-agnostic features for detection tasks in other domains. Findings in this paper contribute to guiding the optimization of AI models to produce high-quality content and addressing related ethical and security concerns. 7 authors · Jan 23, 2023
19 Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We urge the community to adopt a new idea: convert scholarly documents into Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units: (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright. 12 authors · Feb 26 3
- How to Read a Research Compendium Researchers spend a great deal of time reading research papers. Keshav (2012) provides a three-pass method to researchers to improve their reading skills. This article extends Keshav's method for reading a research compendium. Research compendia are an increasingly used form of publication, which packages not only the research paper's text and figures, but also all data and software for better reproducibility. We introduce the existing conventions for research compendia and suggest how to utilise their shared properties in a structured reading process. Unlike the original, this article is not build upon a long history but intends to provide guidance at the outset of an emerging practice. 3 authors · Jun 11, 2018
- A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences. 2 authors · Aug 8, 2023
- The Importance of Suppressing Domain Style in Authorship Analysis The prerequisite of many approaches to authorship analysis is a representation of writing style. But despite decades of research, it still remains unclear to what extent commonly used and widely accepted representations like character trigram frequencies actually represent an author's writing style, in contrast to more domain-specific style components or even topic. We address this shortcoming for the first time in a novel experimental setup of fixed authors but swapped domains between training and testing. With this setup, we reveal that approaches using character trigram features are highly susceptible to favor domain information when applied without attention to domains, suffering drops of up to 55.4 percentage points in classification accuracy under domain swapping. We further propose a new remedy based on domain-adversarial learning and compare it to ones from the literature based on heuristic rules. Both can work well, reducing accuracy losses under domain swapping to 3.6% and 3.9%, respectively. 8 authors · May 29, 2020
1 What's the Meaning of Superhuman Performance in Today's NLU? In the last five years, there has been a significant focus in Natural Language Processing (NLP) on developing larger Pretrained Language Models (PLMs) and introducing benchmarks such as SuperGLUE and SQuAD to measure their abilities in language understanding, reasoning, and reading comprehension. These PLMs have achieved impressive results on these benchmarks, even surpassing human performance in some cases. This has led to claims of superhuman capabilities and the provocative idea that certain tasks have been solved. In this position paper, we take a critical look at these claims and ask whether PLMs truly have superhuman abilities and what the current benchmarks are really evaluating. We show that these benchmarks have serious limitations affecting the comparison between humans and PLMs and provide recommendations for fairer and more transparent benchmarks. 12 authors · May 15, 2023
2 A Quantitative Review on Language Model Efficiency Research Language models (LMs) are being scaled and becoming powerful. Improving their efficiency is one of the core research topics in neural information processing systems. Tay et al. (2022) provided a comprehensive overview of efficient Transformers that have become an indispensable staple in the field of NLP. However, in the section of "On Evaluation", they left an open question "which fundamental efficient Transformer one should consider," answered by "still a mystery" because "many research papers select their own benchmarks." Unfortunately, there was not quantitative analysis about the performances of Transformers on any benchmarks. Moreover, state space models (SSMs) have demonstrated their abilities of modeling long-range sequences with non-attention mechanisms, which were not discussed in the prior review. This article makes a meta analysis on the results from a set of papers on efficient Transformers as well as those on SSMs. It provides a quantitative review on LM efficiency research and gives suggestions for future research. 3 authors · May 28, 2023
2 QuALITY: Question Answering with Long Input Texts, Yes! To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%). 11 authors · Dec 15, 2021
- Towards Full Authorship with AI: Supporting Revision with AI-Generated Views Large language models (LLMs) are shaping a new user interface (UI) paradigm in writing tools by enabling users to generate text through prompts. This paradigm shifts some creative control from the user to the system, thereby diminishing the user's authorship and autonomy in the writing process. To restore autonomy, we introduce Textfocals, a UI prototype designed to investigate a human-centered approach that emphasizes the user's role in writing. Textfocals supports the writing process by providing LLM-generated summaries, questions, and advice (i.e., LLM views) in a sidebar of a text editor, encouraging reflection and self-driven revision in writing without direct text generation. Textfocals' UI affordances, including contextually adaptive views and scaffolding for prompt selection and customization, offer a novel way to interact with LLMs where users maintain full authorship of their writing. A formative user study with Textfocals showed promising evidence that this approach might help users develop underdeveloped ideas, cater to the rhetorical audience, and clarify their writing. However, the study also showed interaction design challenges related to document navigation and scoping, prompt engineering, and context management. Our work highlights the breadth of the design space of writing support interfaces powered by generative AI that maintain authorship integrity. 7 authors · Mar 1, 2024
- PyThaiNLP: Thai Natural Language Processing in Python We present PyThaiNLP, a free and open-source natural language processing (NLP) library for Thai language implemented in Python. It provides a wide range of software, models, and datasets for Thai language. We first provide a brief historical context of tools for Thai language prior to the development of PyThaiNLP. We then outline the functionalities it provided as well as datasets and pre-trained language models. We later summarize its development milestones and discuss our experience during its development. We conclude by demonstrating how industrial and research communities utilize PyThaiNLP in their work. The library is freely available at https://github.com/pythainlp/pythainlp. 9 authors · Dec 7, 2023
45 Kandinsky 3.0 Technical Report We present Kandinsky 3.0, a large-scale text-to-image generation model based on latent diffusion, continuing the series of text-to-image Kandinsky models and reflecting our progress to achieve higher quality and realism of image generation. Compared to previous versions of Kandinsky 2.x, Kandinsky 3.0 leverages a two times larger U-Net backbone, a ten times larger text encoder and removes diffusion mapping. We describe the architecture of the model, the data collection procedure, the training technique, and the production system of user interaction. We focus on the key components that, as we have identified as a result of a large number of experiments, had the most significant impact on improving the quality of our model compared to the others. By our side-by-side comparisons, Kandinsky becomes better in text understanding and works better on specific domains. Project page: https://ai-forever.github.io/Kandinsky-3 9 authors · Dec 6, 2023 1
- On the Creativity of Large Language Models Large Language Models (LLMs) are revolutionizing several areas of Artificial Intelligence. One of the most remarkable applications is creative writing, e.g., poetry or storytelling: the generated outputs are often of astonishing quality. However, a natural question arises: can LLMs be really considered creative? In this article we firstly analyze the development of LLMs under the lens of creativity theories, investigating the key open questions and challenges. In particular, we focus our discussion around the dimensions of value, novelty and surprise as proposed by Margaret Boden in her work. Then, we consider different classic perspectives, namely product, process, press and person. We discuss a set of ``easy'' and ``hard'' problems in machine creativity, presenting them in relation to LLMs. Finally, we examine the societal impact of these technologies with a particular focus on the creative industries, analyzing the opportunities offered by them, the challenges arising by them and the potential associated risks, from both legal and ethical points of view. 2 authors · Mar 27, 2023
- Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems. 8 authors · Jun 24, 2024
18 AnimateDiff-Lightning: Cross-Model Diffusion Distillation We present AnimateDiff-Lightning for lightning-fast video generation. Our model uses progressive adversarial diffusion distillation to achieve new state-of-the-art in few-step video generation. We discuss our modifications to adapt it for the video modality. Furthermore, we propose to simultaneously distill the probability flow of multiple base diffusion models, resulting in a single distilled motion module with broader style compatibility. We are pleased to release our distilled AnimateDiff-Lightning model for the community's use. 2 authors · Mar 19, 2024 4
- Query Understanding for Natural Language Enterprise Search Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more "natural" language. The engine tries to understand the meaning of the queries and to map the query words to the symbols it supports like Persons, Organizations, Time Expressions etc.. It, then, retrieves the information that satisfies the user's need in different forms like an answer, a record or a list of records. We present an NLS system we implemented as part of the Search service of a major CRM platform. The system is currently in production serving thousands of customers. Our user studies showed that creating dynamic reports with NLS saved more than 50% of our user's time compared to achieving the same result with navigational search. We describe the architecture of the system, the particularities of the CRM domain as well as how they have influenced our design decisions. Among several submodules of the system we detail the role of a Deep Learning Named Entity Recognizer. The paper concludes with discussion over the lessons learned while developing this product. 8 authors · Dec 11, 2020
- LitSearch: A Retrieval Benchmark for Scientific Literature Search Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case. 6 authors · Jul 10, 2024
- Breaking the HISCO Barrier: Automatic Occupational Standardization with OccCANINE This paper introduces a new tool, OccCANINE, to automatically transform occupational descriptions into the HISCO classification system. The manual work involved in processing and classifying occupational descriptions is error-prone, tedious, and time-consuming. We finetune a preexisting language model (CANINE) to do this automatically thereby performing in seconds and minutes what previously took days and weeks. The model is trained on 14 million pairs of occupational descriptions and HISCO codes in 13 different languages contributed by 22 different sources. Our approach is shown to have accuracy, recall and precision above 90 percent. Our tool breaks the metaphorical HISCO barrier and makes this data readily available for analysis of occupational structures with broad applicability in economics, economic history and various related disciplines. 2 authors · Feb 21, 2024
- YOLOv1 to YOLOv10: The fastest and most accurate real-time object detection systems This is a comprehensive review of the YOLO series of systems. Different from previous literature surveys, this review article re-examines the characteristics of the YOLO series from the latest technical point of view. At the same time, we also analyzed how the YOLO series continued to influence and promote real-time computer vision-related research and led to the subsequent development of computer vision and language models.We take a closer look at how the methods proposed by the YOLO series in the past ten years have affected the development of subsequent technologies and show the applications of YOLO in various fields. We hope this article can play a good guiding role in subsequent real-time computer vision development. 2 authors · Aug 17, 2024
- Future Language Modeling from Temporal Document History Predicting the future is of great interest across many aspects of human activity. Businesses are interested in future trends, traders are interested in future stock prices, and companies are highly interested in future technological breakthroughs. While there are many automated systems for predicting future numerical data, such as weather, stock prices, and demand for products, there is relatively little work in automatically predicting textual data. Humans are interested in textual data predictions because it is a natural format for our consumption, and experts routinely make predictions in a textual format (Christensen et al., 2004; Tetlock & Gardner, 2015; Frick, 2015). However, there has been relatively little formalization of this general problem in the machine learning or natural language processing communities. To address this gap, we introduce the task of future language modeling: probabilistic modeling of texts in the future based on a temporal history of texts. To our knowledge, our work is the first work to formalize the task of predicting the future in this way. We show that it is indeed possible to build future language models that improve upon strong non-temporal language model baselines, opening the door to working on this important, and widely applicable problem. 2 authors · Apr 16, 2024
13 Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available. 3 authors · Aug 28, 2024 4
- Noise2Music: Text-conditioned Music Generation with Diffusion Models We introduce Noise2Music, where a series of diffusion models is trained to generate high-quality 30-second music clips from text prompts. Two types of diffusion models, a generator model, which generates an intermediate representation conditioned on text, and a cascader model, which generates high-fidelity audio conditioned on the intermediate representation and possibly the text, are trained and utilized in succession to generate high-fidelity music. We explore two options for the intermediate representation, one using a spectrogram and the other using audio with lower fidelity. We find that the generated audio is not only able to faithfully reflect key elements of the text prompt such as genre, tempo, instruments, mood, and era, but goes beyond to ground fine-grained semantics of the prompt. Pretrained large language models play a key role in this story -- they are used to generate paired text for the audio of the training set and to extract embeddings of the text prompts ingested by the diffusion models. Generated examples: https://google-research.github.io/noise2music 15 authors · Feb 8, 2023
2 Moûsai: Text-to-Music Generation with Long-Context Latent Diffusion Recent years have seen the rapid development of large generative models for text; however, much less research has explored the connection between text and another "language" of communication -- music. Music, much like text, can convey emotions, stories, and ideas, and has its own unique structure and syntax. In our work, we bridge text and music via a text-to-music generation model that is highly efficient, expressive, and can handle long-term structure. Specifically, we develop Mo\^usai, a cascading two-stage latent diffusion model that can generate multiple minutes of high-quality stereo music at 48kHz from textual descriptions. Moreover, our model features high efficiency, which enables real-time inference on a single consumer GPU with a reasonable speed. Through experiments and property analyses, we show our model's competence over a variety of criteria compared with existing music generation models. Lastly, to promote the open-source culture, we provide a collection of open-source libraries with the hope of facilitating future work in the field. We open-source the following: Codes: https://github.com/archinetai/audio-diffusion-pytorch; music samples for this paper: http://bit.ly/44ozWDH; all music samples for all models: https://bit.ly/audio-diffusion. 4 authors · Jan 27, 2023 1
- AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library This paper describes our winning contribution to SemEval 2018 Task 4: Character Identification on Multiparty Dialogues. It is a simple, standard model with one key innovation, an entity library. Our results show that this innovation greatly facilitates the identification of infrequent characters. Because of the generic nature of our model, this finding is potentially relevant to any task that requires effective learning from sparse or unbalanced data. 5 authors · May 14, 2018
- Aspect-based Analysis of Advertising Appeals for Search Engine Advertising Writing an ad text that attracts people and persuades them to click or act is essential for the success of search engine advertising. Therefore, ad creators must consider various aspects of advertising appeals (A^3) such as the price, product features, and quality. However, products and services exhibit unique effective A^3 for different industries. In this work, we focus on exploring the effective A^3 for different industries with the aim of assisting the ad creation process. To this end, we created a dataset of advertising appeals and used an existing model that detects various aspects for ad texts. Our experiments demonstrated that different industries have their own effective A^3 and that the identification of the A^3 contributes to the estimation of advertising performance. 6 authors · Apr 25, 2022
1 Can There be Art Without an Artist? Generative AI based art has proliferated in the past year, with increasingly impressive use cases from generating fake human faces to the creation of systems that can generate thousands of artistic images from text prompts - some of these images have even been "good" enough to win accolades from qualified judges. In this paper, we explore how Generative Models have impacted artistry, not only from a qualitative point of view, but also from an angle of exploitation of artists -- both via plagiarism, where models are trained on their artwork without permission, and via profit shifting, where profits in the art market have shifted from art creators to model owners. However, we posit that if deployed responsibly, AI generative models have the possibility of being a positive, new modality in art that does not displace or harm existing artists. 2 authors · Sep 15, 2022
2 Step-by-Step Diffusion: An Elementary Tutorial We present an accessible first course on diffusion models and flow matching for machine learning, aimed at a technical audience with no diffusion experience. We try to simplify the mathematical details as much as possible (sometimes heuristically), while retaining enough precision to derive correct algorithms. 4 authors · Jun 13, 2024
- Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest We challenge AI models to "demonstrate understanding" of the sophisticated multimodal humor of The New Yorker Caption Contest. Concretely, we develop three carefully circumscribed tasks for which it suffices (but is not necessary) to grasp potentially complex and unexpected relationships between image and caption, and similarly complex and unexpected allusions to the wide varieties of human experience; these are the hallmarks of a New Yorker-caliber cartoon. We investigate vision-and-language models that take as input the cartoon pixels and caption directly, as well as language-only models for which we circumvent image-processing by providing textual descriptions of the image. Even with the rich multifaceted annotations we provide for the cartoon images, we identify performance gaps between high-quality machine learning models (e.g., a fine-tuned, 175B parameter language model) and humans. We publicly release our corpora including annotations describing the image's locations/entities, what's unusual about the scene, and an explanation of the joke. 8 authors · Sep 13, 2022
- LegalVis: Exploring and Inferring Precedent Citations in Legal Documents To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow. The STF's justices frequently cite the 58 existing BPs in their decisions, and it is of primary relevance that judicial experts could identify and analyze such citations. To assist in this problem, we propose LegalVis, a web-based visual analytics system designed to support the analysis of legal documents that cite or could potentially cite a BP. We model the problem of identifying potential citations (i.e., non-explicit) as a classification problem. However, a simple score is not enough to explain the results; that is why we use an interpretability machine learning method to explain the reason behind each identified citation. For a compelling visual exploration of documents and BPs, LegalVis comprises three interactive visual components: the first presents an overview of the data showing temporal patterns, the second allows filtering and grouping relevant documents by topic, and the last one shows a document's text aiming to interpret the model's output by pointing out which paragraphs are likely to mention the BP, even if not explicitly specified. We evaluated our identification model and obtained an accuracy of 96%; we also made a quantitative and qualitative analysis of the results. The usefulness and effectiveness of LegalVis were evaluated through two usage scenarios and feedback from six domain experts. 4 authors · Mar 3, 2022
32 A Survey on the Honesty of Large Language Models Honesty is a fundamental principle for aligning large language models (LLMs) with human values, requiring these models to recognize what they know and don't know and be able to faithfully express their knowledge. Despite promising, current LLMs still exhibit significant dishonest behaviors, such as confidently presenting wrong answers or failing to express what they know. In addition, research on the honesty of LLMs also faces challenges, including varying definitions of honesty, difficulties in distinguishing between known and unknown knowledge, and a lack of comprehensive understanding of related research. To address these issues, we provide a survey on the honesty of LLMs, covering its clarification, evaluation approaches, and strategies for improvement. Moreover, we offer insights for future research, aiming to inspire further exploration in this important area. 15 authors · Sep 27, 2024 3
- Style Vectors for Steering Generative Large Language Model This research explores strategies for steering the output of large language models (LLMs) towards specific styles, such as sentiment, emotion, or writing style, by adding style vectors to the activations of hidden layers during text generation. We show that style vectors can be simply computed from recorded layer activations for input texts in a specific style in contrast to more complex training-based approaches. Through a series of experiments, we demonstrate the effectiveness of activation engineering using such style vectors to influence the style of generated text in a nuanced and parameterisable way, distinguishing it from prompt engineering. The presented research constitutes a significant step towards developing more adaptive and effective AI-empowered interactive systems. 8 authors · Feb 2, 2024
- CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages We describe our development of CSS10, a collection of single speaker speech datasets for ten languages. It is composed of short audio clips from LibriVox audiobooks and their aligned texts. To validate its quality we train two neural text-to-speech models on each dataset. Subsequently, we conduct Mean Opinion Score tests on the synthesized speech samples. We make our datasets, pre-trained models, and test resources publicly available. We hope they will be used for future speech tasks. 2 authors · Mar 27, 2019
1 Clinical Document Corpora and Assorted Domain Proxies: A Survey of Diversity in Corpus Design, with Focus on German Text Data We survey clinical document corpora, with focus on German textual data. Due to rigid data privacy legislation in Germany these resources, with only few exceptions, are stored in safe clinical data spaces and locked against clinic-external researchers. This situation stands in stark contrast with established workflows in the field of natural language processing where easy accessibility and reuse of data collections are common practice. Hence, alternative corpus designs have been examined to escape from this data poverty. Besides machine translation of English clinical datasets and the generation of synthetic corpora with fictitious clinical contents, several other types of domain proxies have come up as substitutes for authentic clinical documents. Common instances of close proxies are medical journal publications, clinical therapy guidelines, drug labels, etc., more distant proxies include online encyclopedic medical articles or medical contents from social media channels. After PRISM-conformant screening of 359 hits from four bibliographic systems, 75 relevant documents were finally selected for this review and 59 distinct corpora were determined. We identified 24 real clinical corpora (from 40 publications) out of which only 5 are publicly distributable. 2 translations of real corpora and 3 synthetic ones complement the set of clinical corpora. 14 corpora were categorized as close domain proxies, 16 as distant ones. There is a clear divide between the large number of non-accessible authentic clinical German-language corpora and their publicly accessible substitutes: translated or synthetic, close or more distant proxies. So on first sight, the data bottleneck seems broken. Intuitively yet, differences in genre-specific writing style, wording and medical domain expertise in this typological space are also obvious. This raises the question how valid alternative corpus designs really are. 1 authors · Nov 29, 2024
1 Breaking Barriers to Creative Expression: Co-Designing and Implementing an Accessible Text-to-Image Interface Text-to-image generation models have grown in popularity due to their ability to produce high-quality images from a text prompt. One use for this technology is to enable the creation of more accessible art creation software. In this paper, we document the development of an alternative user interface that reduces the typing effort needed to enter image prompts by providing suggestions from a large language model, developed through iterative design and testing within the project team. The results of this testing demonstrate how generative text models can support the accessibility of text-to-image models, enabling users with a range of abilities to create visual art. 5 authors · Sep 5, 2023
- ChID: A Large-scale Chinese IDiom Dataset for Cloze Test Cloze-style reading comprehension in Chinese is still limited due to the lack of various corpora. In this paper we propose a large-scale Chinese cloze test dataset ChID, which studies the comprehension of idiom, a unique language phenomenon in Chinese. In this corpus, the idioms in a passage are replaced by blank symbols and the correct answer needs to be chosen from well-designed candidate idioms. We carefully study how the design of candidate idioms and the representation of idioms affect the performance of state-of-the-art models. Results show that the machine accuracy is substantially worse than that of human, indicating a large space for further research. 3 authors · Jun 4, 2019
4 The Claire French Dialogue Dataset We present the Claire French Dialogue Dataset (CFDD), a resource created by members of LINAGORA Labs in the context of the OpenLLM France initiative. CFDD is a corpus containing roughly 160 million words from transcripts and stage plays in French that we have assembled and publicly released in an effort to further the development of multilingual, open source language models. This paper describes the 24 individual corpora of which CFDD is composed and provides links and citations to their original sources. It also provides our proposed breakdown of the full CFDD dataset into eight categories of subcorpora and describes the process we followed to standardize the format of the final dataset. We conclude with a discussion of similar work and future directions. 6 authors · Nov 28, 2023 2
- Embracing data abundance: BookTest Dataset for Reading Comprehension There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement. 3 authors · Oct 4, 2016