File size: 725 Bytes
763e962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import torch
import tensorflow as tf
from transformers import RobertaTokenizer, RobertaModel
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/bert_empathy")
model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/bert_empathy")

def roberta(x):
    encoded_input = tokenizer(x, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = tf.nn.softmax(scores)
    return scores.numpy()[1]