File size: 2,305 Bytes
0bb114a
 
 
 
8cea724
 
 
6edbc9f
0bb114a
 
 
 
 
 
 
 
6edbc9f
 
0bb114a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edbc9f
 
0bb114a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
This model is a merged version of [parlance-labs/hc-mistral-alpaca](https://huggingface.co/parlance-labs/hc-mistral-alpaca)

## Usage

You can use this model with the following code:

First, download the model 

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id='parlance-labs/hc-mistral-alpaca-merged'
model = AutoModelForCausalLM.from_pretrained(model_id).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
```

Define helper functions

```python
def prompt(nlq, cols):
    return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query.

### Instruction:

NLQ: "{nlq}"

Columns: {cols}

### Response:
"""

def prompt_tok(nlq, cols):
    _p = prompt(nlq, cols)
    input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda()
    out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, 
                          do_sample=False)
    return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), 
                                  skip_special_tokens=True)[0][len(_p):]
```

Get predictions

```python
nlq = "Exception count by exception and caller"
cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route']

# print prediction
out = prompt_tok(nlq, cols)
print(nlq, '\n', out)
```