hamel commited on
Commit
d244bab
1 Parent(s): 4a9c26f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -93
README.md CHANGED
@@ -12,101 +12,11 @@ model-index:
12
 
13
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
 
 
15
 
16
- # Axolotl Config
17
 
18
- axolotl version: `0.3.0`
19
- ```yaml
20
- base_model: mistralai/Mistral-7B-v0.1
21
- model_type: MistralForCausalLM
22
- tokenizer_type: LlamaTokenizer
23
- is_mistral_derived_model: true
24
-
25
- load_in_8bit: false
26
- load_in_4bit: true
27
- strict: false
28
-
29
- lora_fan_in_fan_out: false
30
- data_seed: 49
31
- seed: 49
32
-
33
- datasets:
34
- - path: _synth_data/alpaca_synth_queries_healed.jsonl
35
- type: sharegpt
36
- conversation: alpaca
37
- dataset_prepared_path: last_run_prepared
38
- val_set_size: 0.1
39
- output_dir: ./qlora-alpaca-out
40
- hub_model_id: hamel/hc-mistral-alpaca
41
-
42
- adapter: qlora
43
- lora_model_dir:
44
-
45
- sequence_len: 896
46
- sample_packing: false
47
- pad_to_sequence_len: true
48
-
49
- lora_r: 32
50
- lora_alpha: 16
51
- lora_dropout: 0.05
52
- lora_target_linear: true
53
- lora_fan_in_fan_out:
54
- lora_target_modules:
55
- - gate_proj
56
- - down_proj
57
- - up_proj
58
- - q_proj
59
- - v_proj
60
- - k_proj
61
- - o_proj
62
-
63
- wandb_project: hc-axolotl-mistral
64
- wandb_entity: hamelsmu
65
-
66
- gradient_accumulation_steps: 4
67
- micro_batch_size: 16
68
- eval_batch_size: 16
69
- num_epochs: 3
70
- optimizer: adamw_bnb_8bit
71
- lr_scheduler: cosine
72
- learning_rate: 0.0002
73
- max_grad_norm: 1.0
74
- adam_beta2: 0.95
75
- adam_epsilon: 0.00001
76
- save_total_limit: 12
77
-
78
- train_on_inputs: false
79
- group_by_length: false
80
- bf16: true
81
- fp16: false
82
- tf32: false
83
-
84
- gradient_checkpointing: true
85
- early_stopping_patience:
86
- resume_from_checkpoint:
87
- local_rank:
88
- logging_steps: 1
89
- xformers_attention:
90
- flash_attention: true
91
-
92
- loss_watchdog_threshold: 5.0
93
- loss_watchdog_patience: 3
94
-
95
- warmup_steps: 20
96
- evals_per_epoch: 4
97
- eval_table_size:
98
- eval_table_max_new_tokens: 128
99
- saves_per_epoch: 6
100
- debug:
101
- weight_decay: 0.0
102
- fsdp:
103
- fsdp_config:
104
- special_tokens:
105
- bos_token: "<s>"
106
- eos_token: "</s>"
107
- unk_token: "<unk>"
108
- save_safetensors: true
109
- ```
110
 
111
  # hc-mistral-alpaca
112
 
@@ -156,16 +66,30 @@ def prompt_tok(nlq, cols):
156
  Finally, you can get predictions like this:
157
 
158
  ```python
 
159
  nlq = "Exception count by exception and caller"
160
  cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route']
 
 
 
 
161
  ```
162
 
 
 
 
 
 
 
163
  Alternatively, you can play with this model on Replicate: [hamelsmu/honeycomb-2](https://replicate.com/hamelsmu/honeycomb-2)
164
 
165
  # Hosted Inference
166
 
167
  This model is hosted on Replicate: (hamelsmu/honeycomb-2)[https://replicate.com/hamelsmu/honeycomb-2], using [this config](https://github.com/hamelsmu/replicate-examples/tree/master/mistral-transformers-2).
168
 
 
 
 
169
 
170
  ### Framework versions
171
 
 
12
 
13
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
 
15
+ ### Model Description
16
 
17
+ A model that can generate [Honeycomb Queries](https://www.honeycomb.io/blog/introducing-query-assistant).
18
 
19
+ _fine-tuned by [Hamel Husain](https://hamel.dev)_
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  # hc-mistral-alpaca
22
 
 
66
  Finally, you can get predictions like this:
67
 
68
  ```python
69
+ # model inputs
70
  nlq = "Exception count by exception and caller"
71
  cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route']
72
+
73
+ # print prediction
74
+ out = prompt_tok(nlq, cols)
75
+ print(nlq, '\n', out)
76
  ```
77
 
78
+ This will give you a prediction that looks like this:
79
+
80
+ ```md
81
+ "{'breakdowns': ['exception.message', 'exception.type'], 'calculations': [{'op': 'COUNT'}], 'filters': [{'column': 'exception.message', 'op': 'exists'}, {'column': 'exception.type', 'op': 'exists'}], 'orders': [{'op': 'COUNT', 'order': 'descending'}], 'time_range': 7200}"
82
+ ```
83
+
84
  Alternatively, you can play with this model on Replicate: [hamelsmu/honeycomb-2](https://replicate.com/hamelsmu/honeycomb-2)
85
 
86
  # Hosted Inference
87
 
88
  This model is hosted on Replicate: (hamelsmu/honeycomb-2)[https://replicate.com/hamelsmu/honeycomb-2], using [this config](https://github.com/hamelsmu/replicate-examples/tree/master/mistral-transformers-2).
89
 
90
+ # Training Procedure
91
+
92
+ Used [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl/tree/main), see [this config](config/axolotl_config.yml).
93
 
94
  ### Framework versions
95