--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: hc-mistral-alpaca results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # Axolotl Config axolotl version: `0.3.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false lora_fan_in_fan_out: false data_seed: 49 seed: 49 datasets: - path: _synth_data/alpaca_synth_queries_healed.jsonl type: sharegpt conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-alpaca-out hub_model_id: hamel/hc-mistral-alpaca adapter: qlora lora_model_dir: sequence_len: 896 sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: hc-axolotl-mistral wandb_entity: hamelsmu gradient_accumulation_steps: 4 micro_batch_size: 16 eval_batch_size: 16 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 max_grad_norm: 1.0 adam_beta2: 0.95 adam_epsilon: 0.00001 save_total_limit: 12 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 20 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 6 debug: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" save_safetensors: true ``` # hc-mistral-alpaca This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). See this [wandb run](https://wandb.ai/hamelsmu/hc-axolotl-mistral/runs/7dq9l9vu/overview) to see training metrics. # Usage You can use this model with the following code: First, download the model ```python from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer model_id='parlance-labs/hc-mistral-alpaca' model = AutoPeftModelForCausalLM.from_pretrained(model_id).cuda() tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token ``` Then, construct the prompt template like so: ```python def prompt(nlq, cols): return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query. ### Instruction: NLQ: "{nlq}" Columns: {cols} ### Response: """ def prompt_tok(nlq, cols): _p = prompt(nlq, cols) input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda() out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, do_sample=False) return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), skip_special_tokens=True)[0][len(_p):] ``` Finally, you can get predictions like this: ```python nlq = "Exception count by exception and caller" cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route'] ``` Alternatively, you can play with this model on Replicate: [hamelsmu/honeycomb-2](https://replicate.com/hamelsmu/honeycomb-2) # Hosted Inference This model is hosted on Replicate: (hamelsmu/honeycomb-2)[https://replicate.com/hamelsmu/honeycomb-2], using [this config](https://github.com/hamelsmu/replicate-examples/tree/master/mistral-transformers-2). ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0