parthsuresh commited on
Commit
9190c6e
1 Parent(s): 208c4f1

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 239.86 +/- 54.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4643b18550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4643b185e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4643b18670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4643b18700>", "_build": "<function ActorCriticPolicy._build at 0x7d4643b18790>", "forward": "<function ActorCriticPolicy.forward at 0x7d4643b18820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4643b188b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4643b18940>", "_predict": "<function ActorCriticPolicy._predict at 0x7d4643b189d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4643b18a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4643b18af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4643b18b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d45e7a93200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691355902066226156, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKqBgj6h9IY+37OTPQFKx74/EdI9ze1hvAAAAAAAAAAACBWGvrRvzbzSpuc6nzxOOS8MNj5S8Q26AACAPwAAgD8mtK89PklWPzaqEj5lpzK/M/WSPQ1417wAAAAAAAAAAA1sNz71Fl0/eT4cPq9AHr+S5c89klPsvAAAAAAAAAAAM6UePc7lij05fbC9jYP8vdxm57wzvZK9AAAAAAAAAAAKFDw/o0iXvi7vSrlMpGU4c4PMvjbgnzgAAIA/AACAP2ZgVb6hBLq87z+guyTDxLszBSU+UgWbPAAAgD8AAIA/YMiVPve7k72UoyE+XsPmuzZa+b77DaC8AACAPwAAgD8a7GK9G8iwP6Zkwb6gHYm+XJUDvOafpr0AAAAAAAAAAMadGr6n7iU/98s/vqd2Cr9Earq9RdX8vAAAAAAAAAAAsPBxvsG5z7wRVUC5cJHetx9ZNT6CtHk4AACAPwAAgD+aOtM+mgotPl4oYL6JNsy+3BUTPeoAxr0AAAAAAAAAANOeeb67rY68abAwO5p+Wjlhzvk9wvBRugAAgD8AAIA/EJVNvjRp9ryY7jE6gJDcONl+XD7QAHe5AACAPwAAgD8AQLY6qCONPrtyCb28Gq2+V83zOt7bEbwAAAAAAAAAAJLSCj+LyzO+9qabvL1lP7u+ouu+6hXzvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+kIg3cYZWMAWyUS9aMAXSUR0CbsKjvd/KAdX2UKGgGR0BunbNt65XmaAdNFQFoCEdAm7JVbeMyanV9lChoBkdAc2T1RtP56GgHTQ8BaAhHQJu0QXhwVCZ1fZQoaAZHQGgXKJl8PWhoB03iAWgIR0CbtSD63y7PdX2UKGgGR0Bw474CZF5OaAdLrmgIR0Cbtb/0dzXCdX2UKGgGR0BuWcwQDmr9aAdL8mgIR0CbtdvzOHFhdX2UKGgGR0BzVQRradtmaAdNLAFoCEdAm7aUq6OHWXV9lChoBkdAYK2yM1jy4GgHTegDaAhHQJu2pmYjSoh1fZQoaAZHQHM0/Fm4AjpoB01IAWgIR0CbtwmnO0LMdX2UKGgGR0BveqbBoEjgaAdLxmgIR0Cbtwmm+CbudX2UKGgGR0BuwV8NQTEjaAdLyWgIR0Cbt4DQqqffdX2UKGgGR0BxHpIK+i8GaAdL0mgIR0CbuDCGN70GdX2UKGgGR0ByEE2Ifr8jaAdL6GgIR0CbuWWyTpxFdX2UKGgGR0BvpeVJL/S6aAdLs2gIR0Cbu6yC4BmxdX2UKGgGR0Bvw+3hGYrsaAdNbgJoCEdAm7zDslb/wXV9lChoBkdAb6rGhmGucWgHS8VoCEdAm728p1A7gnV9lChoBkdAcBH9wFTvRmgHTVQBaAhHQJu9yXIEKVp1fZQoaAZHQG9m/TkQwsZoB0vRaAhHQJu/L17IDHR1fZQoaAZHQHKrpTl1bJRoB0vPaAhHQJvAX13+uNh1fZQoaAZHQHEvECA+Y+loB0u/aAhHQJvAx2eQMhJ1fZQoaAZHQHCy30Gu9vloB0vyaAhHQJvBDRF7Uod1fZQoaAZHQHClBYV6/qRoB0vfaAhHQJvBGg6EJ0J1fZQoaAZHQHDDoEbHZK5oB0vhaAhHQJvB32kBS1p1fZQoaAZHQHLiGSt/4ItoB00kAWgIR0Cbxgkv9LpSdX2UKGgGR0BxTyOktVaPaAdNQAFoCEdAm8YEMoc7yXV9lChoBkdAcRk9QoCuEGgHS7xoCEdAm8aBBqsU7HV9lChoBkdAbPUscQyylmgHTRYBaAhHQJvGjMB6rvN1fZQoaAZHQHPomgWac7RoB0vYaAhHQJvG0bfgrH51fZQoaAZHQGXz/779AHFoB03CAmgIR0Cbx026ClJpdX2UKGgGR0BuypxBE8aGaAdNCAFoCEdAm8e96ol2NnV9lChoBkdAbhxcKw6hg2gHS9BoCEdAm8gvhESdv3V9lChoBkdAcbfffGdZq2gHS6xoCEdAm8g3Roh6jXV9lChoBkdAcbi7SApazWgHS7JoCEdAm8hcvEjxC3V9lChoBkdAc7R/2TPjXGgHS9BoCEdAm8khxcVxj3V9lChoBkdAb96VrylN12gHS8toCEdAm8mtMbm2cHV9lChoBkdAc93pqREF4mgHTS8BaAhHQJvKU0waisZ1fZQoaAZHQHGuXjuKGcpoB00wAWgIR0CbzByfcvdudX2UKGgGR0BxODCKrJbMaAdLsWgIR0CbzIBS1maqdX2UKGgGR0BxS8Qz1sciaAdLtGgIR0CbzJE6kqMFdX2UKGgGR0BwAJi4J/oaaAdL2WgIR0CbzVZH/cWTdX2UKGgGR0BxESimEXchaAdL5GgIR0CbzbiiZfD2dX2UKGgGR0Bxw9rTH80laAdLx2gIR0CbzlAnlXA/dX2UKGgGR0BwmMGgSOBEaAdLwGgIR0CbzonezlcRdX2UKGgGR0BuRzr9l2/0aAdLv2gIR0CbzomZVn27dX2UKGgGR0BvGdev6j33aAdLw2gIR0CbztNNJvpAdX2UKGgGR0Bxwe/yoXKsaAdNAQFoCEdAm89YfOlfq3V9lChoBkdAbw9M0xdpqWgHS7ZoCEdAm8++ii7Ci3V9lChoBkdAcXKzyz5XVGgHTQoBaAhHQJvQEUUO/cp1fZQoaAZHQGzh2fbsWwhoB0vWaAhHQJvQPkS26TZ1fZQoaAZHQGINM1CPZIxoB03oA2gIR0Cb0htLL6k7dX2UKGgGR0By3f5FgDzRaAdL9GgIR0Cb0mSgoPTYdX2UKGgGR0BvT2hZha1UaAdLuGgIR0Cb0o5vLowFdX2UKGgGR0BxHFlMAWBSaAdL12gIR0Cb1GearmyPdX2UKGgGR0BweWxzJZGKaAdL1GgIR0Cb1LV1Oj7AdX2UKGgGR0A4nZZ0Syt3aAdLq2gIR0Cb1PtZFG5MdX2UKGgGR0BxlKOcUdq+aAdLwGgIR0Cb1S+49X9zdX2UKGgGR0BtEvHFPznSaAdNGgFoCEdAm9XZemelK3V9lChoBkdAcAG3RG+bmWgHS/5oCEdAm9bTbFjur3V9lChoBkdAcULpeu3c6GgHS+loCEdAm9enzg/C7HV9lChoBkdAcR1yLAHmimgHS+1oCEdAm9htaEBbOnV9lChoBkdAcZNiLVFx42gHTSMBaAhHQJvYfvDxb0R1fZQoaAZHQGGD4zi0fHRoB03oA2gIR0Cb2MSlWOp9dX2UKGgGR0Bw8d40Mw10aAdNAwFoCEdAm9j8pgCwKXV9lChoBkdAbygBFNL13GgHS79oCEdAm9tCXY150XV9lChoBkdAcnj3RXwLE2gHTQ0BaAhHQJvbjeXRgJF1fZQoaAZHQHB221YyO7xoB00eAWgIR0Cb3FYD1XeWdX2UKGgGR0BzDgbcXWOIaAdL5GgIR0Cb3aapPykLdX2UKGgGR0BxGINkOI69aAdLtGgIR0Cb3bhcqvvCdX2UKGgGR0BwTgGVzIV/aAdL52gIR0Cb3r0FbFCLdX2UKGgGR0BvTVDx9XtCaAdLwGgIR0Cb3tmYSg5BdX2UKGgGR0BysDMfRu0kaAdNGgFoCEdAm97qZtvXLHV9lChoBkdAbFHifg75mGgHTXcBaAhHQJve9vHcUM51fZQoaAZHQHAYn3cpLEloB0vQaAhHQJvfswBYFJR1fZQoaAZHQHB39MoMKCxoB0vLaAhHQJvfxTNt65Z1fZQoaAZHQHN/CQcPvrpoB0veaAhHQJvf5ZpztC11fZQoaAZHQGt+VN5+pfhoB02PAWgIR0Cb4sjlxOtXdX2UKGgGR0BuASO938oAaAdLvWgIR0Cb5HvWpZOjdX2UKGgGR0Bx6pKHwgDBaAdNDAFoCEdAm+TGnsLORnV9lChoBkdAbwruBtk4FWgHS85oCEdAm+USa/h2n3V9lChoBkdAcuaJ9y925mgHTQoBaAhHQJvo6DpTuOV1fZQoaAZHQHJ+76pHZsdoB00UAWgIR0Cb6SV3Ux20dX2UKGgGR0Bxyq1qnFYMaAdNCgFoCEdAm+nmaH9FWnV9lChoBkdAcoOAymALA2gHTRABaAhHQJvqZOrQw9J1fZQoaAZHQHB3Puw5eZ5oB0voaAhHQJvvLsJIDo11fZQoaAZHQGCQopx3mmtoB03oA2gIR0Cb8vpe/pMYdX2UKGgGR0BxrYY64lQeaAdLr2gIR0Cb8yrYoRZmdX2UKGgGR0BzxFStNi6QaAdNIwFoCEdAm/OkETxoZnV9lChoBkdAaqlb3XZoPGgHTW0BaAhHQJv1HEBKcut1fZQoaAZHQHJgTin5zo5oB0vUaAhHQJv3l5LRKHx1fZQoaAZHQGJzYRNATqVoB03oA2gIR0Cb98xeLNwBdX2UKGgGR0BxMGfL9uP4aAdNAwFoCEdAm/lvVRUFS3V9lChoBkdAb9bIV/MGHGgHS7BoCEdAm/oS5RTCL3V9lChoBkdAbjXtsvZh8mgHS6doCEdAm/wkPMB6r3V9lChoBkdAaJFkvsZ5zGgHTbsBaAhHQJv8SIj4YaZ1fZQoaAZHQHFv48Md92JoB0vBaAhHQJv9s/u9eyB1fZQoaAZHQG2m2RaHKwJoB0u7aAhHQJv+Y4dZJTV1fZQoaAZHQFuvyBkI5YJoB03oA2gIR0Cb/8pmVZ9vdX2UKGgGR0BxxyZfD1oQaAdLuWgIR0Cb/+xT850bdX2UKGgGR0BwTl5zHS4OaAdLxGgIR0CcAIT5ftx/dX2UKGgGR0Bx6LTYukDZaAdLwWgIR0CcAcPJaJQ+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
lunar_lander_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:894b00a1f94e070f6ec696dfcc967db38a19e703fb2d01725c45caa4305b54f2
3
+ size 146673
lunar_lander_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
lunar_lander_model/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4643b18550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4643b185e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4643b18670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4643b18700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d4643b18790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d4643b18820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4643b188b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4643b18940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d4643b189d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4643b18a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4643b18af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4643b18b80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d45e7a93200>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1691355902066226156,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKqBgj6h9IY+37OTPQFKx74/EdI9ze1hvAAAAAAAAAAACBWGvrRvzbzSpuc6nzxOOS8MNj5S8Q26AACAPwAAgD8mtK89PklWPzaqEj5lpzK/M/WSPQ1417wAAAAAAAAAAA1sNz71Fl0/eT4cPq9AHr+S5c89klPsvAAAAAAAAAAAM6UePc7lij05fbC9jYP8vdxm57wzvZK9AAAAAAAAAAAKFDw/o0iXvi7vSrlMpGU4c4PMvjbgnzgAAIA/AACAP2ZgVb6hBLq87z+guyTDxLszBSU+UgWbPAAAgD8AAIA/YMiVPve7k72UoyE+XsPmuzZa+b77DaC8AACAPwAAgD8a7GK9G8iwP6Zkwb6gHYm+XJUDvOafpr0AAAAAAAAAAMadGr6n7iU/98s/vqd2Cr9Earq9RdX8vAAAAAAAAAAAsPBxvsG5z7wRVUC5cJHetx9ZNT6CtHk4AACAPwAAgD+aOtM+mgotPl4oYL6JNsy+3BUTPeoAxr0AAAAAAAAAANOeeb67rY68abAwO5p+Wjlhzvk9wvBRugAAgD8AAIA/EJVNvjRp9ryY7jE6gJDcONl+XD7QAHe5AACAPwAAgD8AQLY6qCONPrtyCb28Gq2+V83zOt7bEbwAAAAAAAAAAJLSCj+LyzO+9qabvL1lP7u+ouu+6hXzvAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+kIg3cYZWMAWyUS9aMAXSUR0CbsKjvd/KAdX2UKGgGR0BunbNt65XmaAdNFQFoCEdAm7JVbeMyanV9lChoBkdAc2T1RtP56GgHTQ8BaAhHQJu0QXhwVCZ1fZQoaAZHQGgXKJl8PWhoB03iAWgIR0CbtSD63y7PdX2UKGgGR0Bw474CZF5OaAdLrmgIR0Cbtb/0dzXCdX2UKGgGR0BuWcwQDmr9aAdL8mgIR0CbtdvzOHFhdX2UKGgGR0BzVQRradtmaAdNLAFoCEdAm7aUq6OHWXV9lChoBkdAYK2yM1jy4GgHTegDaAhHQJu2pmYjSoh1fZQoaAZHQHM0/Fm4AjpoB01IAWgIR0CbtwmnO0LMdX2UKGgGR0BveqbBoEjgaAdLxmgIR0Cbtwmm+CbudX2UKGgGR0BuwV8NQTEjaAdLyWgIR0Cbt4DQqqffdX2UKGgGR0BxHpIK+i8GaAdL0mgIR0CbuDCGN70GdX2UKGgGR0ByEE2Ifr8jaAdL6GgIR0CbuWWyTpxFdX2UKGgGR0BvpeVJL/S6aAdLs2gIR0Cbu6yC4BmxdX2UKGgGR0Bvw+3hGYrsaAdNbgJoCEdAm7zDslb/wXV9lChoBkdAb6rGhmGucWgHS8VoCEdAm728p1A7gnV9lChoBkdAcBH9wFTvRmgHTVQBaAhHQJu9yXIEKVp1fZQoaAZHQG9m/TkQwsZoB0vRaAhHQJu/L17IDHR1fZQoaAZHQHKrpTl1bJRoB0vPaAhHQJvAX13+uNh1fZQoaAZHQHEvECA+Y+loB0u/aAhHQJvAx2eQMhJ1fZQoaAZHQHCy30Gu9vloB0vyaAhHQJvBDRF7Uod1fZQoaAZHQHClBYV6/qRoB0vfaAhHQJvBGg6EJ0J1fZQoaAZHQHDDoEbHZK5oB0vhaAhHQJvB32kBS1p1fZQoaAZHQHLiGSt/4ItoB00kAWgIR0Cbxgkv9LpSdX2UKGgGR0BxTyOktVaPaAdNQAFoCEdAm8YEMoc7yXV9lChoBkdAcRk9QoCuEGgHS7xoCEdAm8aBBqsU7HV9lChoBkdAbPUscQyylmgHTRYBaAhHQJvGjMB6rvN1fZQoaAZHQHPomgWac7RoB0vYaAhHQJvG0bfgrH51fZQoaAZHQGXz/779AHFoB03CAmgIR0Cbx026ClJpdX2UKGgGR0BuypxBE8aGaAdNCAFoCEdAm8e96ol2NnV9lChoBkdAbhxcKw6hg2gHS9BoCEdAm8gvhESdv3V9lChoBkdAcbfffGdZq2gHS6xoCEdAm8g3Roh6jXV9lChoBkdAcbi7SApazWgHS7JoCEdAm8hcvEjxC3V9lChoBkdAc7R/2TPjXGgHS9BoCEdAm8khxcVxj3V9lChoBkdAb96VrylN12gHS8toCEdAm8mtMbm2cHV9lChoBkdAc93pqREF4mgHTS8BaAhHQJvKU0waisZ1fZQoaAZHQHGuXjuKGcpoB00wAWgIR0CbzByfcvdudX2UKGgGR0BxODCKrJbMaAdLsWgIR0CbzIBS1maqdX2UKGgGR0BxS8Qz1sciaAdLtGgIR0CbzJE6kqMFdX2UKGgGR0BwAJi4J/oaaAdL2WgIR0CbzVZH/cWTdX2UKGgGR0BxESimEXchaAdL5GgIR0CbzbiiZfD2dX2UKGgGR0Bxw9rTH80laAdLx2gIR0CbzlAnlXA/dX2UKGgGR0BwmMGgSOBEaAdLwGgIR0CbzonezlcRdX2UKGgGR0BuRzr9l2/0aAdLv2gIR0CbzomZVn27dX2UKGgGR0BvGdev6j33aAdLw2gIR0CbztNNJvpAdX2UKGgGR0Bxwe/yoXKsaAdNAQFoCEdAm89YfOlfq3V9lChoBkdAbw9M0xdpqWgHS7ZoCEdAm8++ii7Ci3V9lChoBkdAcXKzyz5XVGgHTQoBaAhHQJvQEUUO/cp1fZQoaAZHQGzh2fbsWwhoB0vWaAhHQJvQPkS26TZ1fZQoaAZHQGINM1CPZIxoB03oA2gIR0Cb0htLL6k7dX2UKGgGR0By3f5FgDzRaAdL9GgIR0Cb0mSgoPTYdX2UKGgGR0BvT2hZha1UaAdLuGgIR0Cb0o5vLowFdX2UKGgGR0BxHFlMAWBSaAdL12gIR0Cb1GearmyPdX2UKGgGR0BweWxzJZGKaAdL1GgIR0Cb1LV1Oj7AdX2UKGgGR0A4nZZ0Syt3aAdLq2gIR0Cb1PtZFG5MdX2UKGgGR0BxlKOcUdq+aAdLwGgIR0Cb1S+49X9zdX2UKGgGR0BtEvHFPznSaAdNGgFoCEdAm9XZemelK3V9lChoBkdAcAG3RG+bmWgHS/5oCEdAm9bTbFjur3V9lChoBkdAcULpeu3c6GgHS+loCEdAm9enzg/C7HV9lChoBkdAcR1yLAHmimgHS+1oCEdAm9htaEBbOnV9lChoBkdAcZNiLVFx42gHTSMBaAhHQJvYfvDxb0R1fZQoaAZHQGGD4zi0fHRoB03oA2gIR0Cb2MSlWOp9dX2UKGgGR0Bw8d40Mw10aAdNAwFoCEdAm9j8pgCwKXV9lChoBkdAbygBFNL13GgHS79oCEdAm9tCXY150XV9lChoBkdAcnj3RXwLE2gHTQ0BaAhHQJvbjeXRgJF1fZQoaAZHQHB221YyO7xoB00eAWgIR0Cb3FYD1XeWdX2UKGgGR0BzDgbcXWOIaAdL5GgIR0Cb3aapPykLdX2UKGgGR0BxGINkOI69aAdLtGgIR0Cb3bhcqvvCdX2UKGgGR0BwTgGVzIV/aAdL52gIR0Cb3r0FbFCLdX2UKGgGR0BvTVDx9XtCaAdLwGgIR0Cb3tmYSg5BdX2UKGgGR0BysDMfRu0kaAdNGgFoCEdAm97qZtvXLHV9lChoBkdAbFHifg75mGgHTXcBaAhHQJve9vHcUM51fZQoaAZHQHAYn3cpLEloB0vQaAhHQJvfswBYFJR1fZQoaAZHQHB39MoMKCxoB0vLaAhHQJvfxTNt65Z1fZQoaAZHQHN/CQcPvrpoB0veaAhHQJvf5ZpztC11fZQoaAZHQGt+VN5+pfhoB02PAWgIR0Cb4sjlxOtXdX2UKGgGR0BuASO938oAaAdLvWgIR0Cb5HvWpZOjdX2UKGgGR0Bx6pKHwgDBaAdNDAFoCEdAm+TGnsLORnV9lChoBkdAbwruBtk4FWgHS85oCEdAm+USa/h2n3V9lChoBkdAcuaJ9y925mgHTQoBaAhHQJvo6DpTuOV1fZQoaAZHQHJ+76pHZsdoB00UAWgIR0Cb6SV3Ux20dX2UKGgGR0Bxyq1qnFYMaAdNCgFoCEdAm+nmaH9FWnV9lChoBkdAcoOAymALA2gHTRABaAhHQJvqZOrQw9J1fZQoaAZHQHB3Puw5eZ5oB0voaAhHQJvvLsJIDo11fZQoaAZHQGCQopx3mmtoB03oA2gIR0Cb8vpe/pMYdX2UKGgGR0BxrYY64lQeaAdLr2gIR0Cb8yrYoRZmdX2UKGgGR0BzxFStNi6QaAdNIwFoCEdAm/OkETxoZnV9lChoBkdAaqlb3XZoPGgHTW0BaAhHQJv1HEBKcut1fZQoaAZHQHJgTin5zo5oB0vUaAhHQJv3l5LRKHx1fZQoaAZHQGJzYRNATqVoB03oA2gIR0Cb98xeLNwBdX2UKGgGR0BxMGfL9uP4aAdNAwFoCEdAm/lvVRUFS3V9lChoBkdAb9bIV/MGHGgHS7BoCEdAm/oS5RTCL3V9lChoBkdAbjXtsvZh8mgHS6doCEdAm/wkPMB6r3V9lChoBkdAaJFkvsZ5zGgHTbsBaAhHQJv8SIj4YaZ1fZQoaAZHQHFv48Md92JoB0vBaAhHQJv9s/u9eyB1fZQoaAZHQG2m2RaHKwJoB0u7aAhHQJv+Y4dZJTV1fZQoaAZHQFuvyBkI5YJoB03oA2gIR0Cb/8pmVZ9vdX2UKGgGR0BxxyZfD1oQaAdLuWgIR0Cb/+xT850bdX2UKGgGR0BwTl5zHS4OaAdLxGgIR0CcAIT5ftx/dX2UKGgGR0Bx6LTYukDZaAdLwWgIR0CcAcPJaJQ+dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
lunar_lander_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee49a2ea78eb3af136a2cbf70217ffbe94503f5caa6312ac4366073936a5a632
3
+ size 87929
lunar_lander_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b098ce644a4d6dec7dfe8c22462dc2aeee51c0e5565b5be138ebf5648ce3d936
3
+ size 43329
lunar_lander_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_model/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (181 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 239.8600356, "std_reward": 54.238106022383064, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-06T21:37:06.992017"}