File size: 2,448 Bytes
8a84f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc3b97
8a84f07
 
 
 
 
bf7facb
8a84f07
bf7facb
 
 
 
8a84f07
 
 
2fc3b97
bf7facb
 
 
 
 
 
 
 
 
 
 
 
 
 
8a84f07
 
b4741b0
8a84f07
2fc3b97
8a84f07
 
 
 
2fc3b97
8a84f07
 
 
 
 
 
 
2fc3b97
8a84f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc3b97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
language: en
datasets:
- librispeech_asr
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
license: apache-2.0
widget:
- example_title: Librispeech sample 1
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
  src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: patrickvonplaten/hubert-xlarge-ls960-ft-4-gram
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (clean)
      type: librispeech_asr
      config: clean
      split: test
      args: 
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 1.71
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (other)
      type: librispeech_asr
      config: other
      split: test
      args: 
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 3.06
---

# Hubert-XLarge-ls960-ft + 4-gram

This model is identical to [Facebook's hubert-xlarge-ls960-ft](https://huggingface.co/facebook/hubert-xlarge-ls960-ft), but is 
augmented with an English 4-gram. The `4-gram.arpa.gz` of [Librispeech's official ngrams](https://www.openslr.org/11) is used.
 
 ## Evaluation
 
 This code snippet shows how to evaluate **patrickvonplaten/hubert-xlarge-ls960-ft-4-gram** on LibriSpeech's "clean" and "other" test data.
 
```python
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torch
from jiwer import wer

model_id = "patrickvonplaten/hubert-xlarge-ls960-ft-4-gram"

librispeech_eval = load_dataset("librispeech_asr", "other", split="test")

model = AutoModelForCTC.from_pretrained(model_id).to("cuda")
processor = AutoProcessor.from_pretrained(model_id)

def map_to_pred(batch):
    inputs = processor(batch["audio"]["array"], sampling_rate=16_000, return_tensors="pt")

    inputs = {k: v.to("cuda") for k,v in inputs.items()}

    with torch.no_grad():
        logits = model(**inputs).logits

    transcription = processor.batch_decode(logits.cpu().numpy()).text[0]
    batch["transcription"] = transcription
    return batch

result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])

print(wer(result["text"], result["transcription"]))
```

*Result (WER)*:

| "clean" | "other" |
|---|---|
| 1.71 | 3.06 |