julien-c HF staff commited on
Commit
c6a58c6
·
1 Parent(s): 2988ff6

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/patrickvonplaten/roberta2roberta-cnn_dailymail-fp16/README.md

Files changed (1) hide show
  1. README.md +238 -0
README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Roberta2Roberta Summarization with 🤗 EncoderDecoder Framework
2
+
3
+ This model is a Roberta2Roberta model fine-tuned on summarization.
4
+
5
+ Roberta2Roberta is a `EncoderDecoderModel`, meaning that both the encoder and the decoder are `roberta-base`
6
+ RoBERTa models. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the
7
+ two pretrained models can simply be loaded into the framework via:
8
+
9
+ ```python
10
+ roberta2roberta = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")
11
+ ```
12
+
13
+ The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal
14
+ masking for auto-regressiv generation.
15
+ Thus, ``roberta2roberta`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model
16
+ `roberta2roberta-cnn_dailymail-fp16` is uploaded here.
17
+
18
+ ## Example
19
+
20
+ The model is by no means a state-of-the-art model, but nevertheless
21
+ produces reasonable summarization results. It was mainly fine-tuned
22
+ as a proof-of-concept for the 🤗 EncoderDecoder Framework.
23
+
24
+ The model can be used as follows:
25
+
26
+ ```python
27
+ from transformers import BertTokenizer, EncoderDecoderModel
28
+
29
+ model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16")
30
+ tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
31
+
32
+ article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David B
33
+ oren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 185
34
+ 6, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confede
35
+ rate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking fu
36
+ ll membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on t
37
+ he fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more invol
38
+ ved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members al
39
+ legedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a frat
40
+ ernity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,
41
+ ' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloy
42
+ d's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing in
43
+ cidents."""
44
+
45
+ input_ids = tokenizer(article, return_tensors="pt").input_ids
46
+ output_ids = model.generate(input_ids)
47
+
48
+ print(tokenizer.decode(output_ids[0], skip_special_tokens=True))
49
+ # should produce
50
+ # Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing racist chants. The fraternity's national chapter has had to close 12 in 18 months over hazing.
51
+ # Sigma has had more than 130 chapters in 18 states. University of Oklahoma president says fraternity has been "deteriorated".
52
+ ```
53
+
54
+ ## Training script:
55
+
56
+ **IMPORTANT**: In order for this code to work, make sure you checkout to the branch
57
+ [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts
58
+ the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840.
59
+
60
+ The following code shows the complete training script that was used to fine-tune `roberta2roberta-cnn_dailymail-fp16
61
+ ` for reproducability. The training last ~9h on a standard GPU.
62
+
63
+ ```python
64
+ #!/usr/bin/env python3
65
+ import nlp
66
+ import logging
67
+ from transformers import RobertaTokenizer, EncoderDecoderModel, Trainer, TrainingArguments
68
+
69
+ logging.basicConfig(level=logging.INFO)
70
+
71
+ model = EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")
72
+ tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
73
+
74
+ # load train and validation data
75
+ train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train")
76
+ val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]")
77
+
78
+ # load rouge for validation
79
+ rouge = nlp.load_metric("rouge", experiment_id=0)
80
+
81
+ # set decoding params
82
+ model.config.decoder_start_token_id = tokenizer.bos_token_id
83
+ model.config.eos_token_id = tokenizer.eos_token_id
84
+ model.config.max_length = 142
85
+ model.config.min_length = 56
86
+ model.config.no_repeat_ngram_size = 3
87
+ model.early_stopping = True
88
+ model.length_penalty = 2.0
89
+ model.num_beams = 4
90
+
91
+ encoder_length = 512
92
+ decoder_length = 128
93
+ batch_size = 16
94
+
95
+
96
+ # map data correctly
97
+ def map_to_encoder_decoder_inputs(batch):
98
+ # Tokenizer will automatically set [BOS] <text> [EOS]
99
+ # cut off at Longformer at 2048
100
+ inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length)
101
+ # force summarization <= 256
102
+ outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length)
103
+
104
+ batch["input_ids"] = inputs.input_ids
105
+ batch["attention_mask"] = inputs.attention_mask
106
+ batch["decoder_input_ids"] = outputs.input_ids
107
+ batch["labels"] = outputs.input_ids.copy()
108
+ # mask loss for padding
109
+ batch["labels"] = [
110
+ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
111
+ ]
112
+ batch["decoder_attention_mask"] = outputs.attention_mask
113
+
114
+ assert all([len(x) == encoder_length for x in inputs.input_ids])
115
+ assert all([len(x) == decoder_length for x in outputs.input_ids])
116
+
117
+ return batch
118
+
119
+
120
+ def compute_metrics(pred):
121
+ labels_ids = pred.label_ids
122
+ pred_ids = pred.predictions
123
+
124
+ # all unnecessary tokens are removed
125
+ pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
126
+ labels_ids[labels_ids == -100] = tokenizer.eos_token_id
127
+ label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
128
+
129
+ rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid
130
+
131
+ return {
132
+ "rouge2_precision": round(rouge_output.precision, 4),
133
+ "rouge2_recall": round(rouge_output.recall, 4),
134
+ "rouge2_fmeasure": round(rouge_output.fmeasure, 4),
135
+ }
136
+
137
+
138
+ # make train dataset ready
139
+ train_dataset = train_dataset.map(
140
+ map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"],
141
+ )
142
+ train_dataset.set_format(
143
+ type="torch", columns=["input_ids", "attention_mask", "decoder_attention_mask", "decoder_input_ids", "labels"],
144
+ )
145
+
146
+ # same for validation dataset
147
+ val_dataset = val_dataset.map(
148
+ map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"],
149
+ )
150
+ val_dataset.set_format(
151
+ type="torch", columns=["input_ids", "decoder_attention_mask", "attention_mask", "decoder_input_ids", "labels"],
152
+ )
153
+
154
+ # set training arguments - these params are not really tuned, feel free to change
155
+ training_args = TrainingArguments(
156
+ output_dir="./",
157
+ per_device_train_batch_size=batch_size,
158
+ per_device_eval_batch_size=batch_size,
159
+ predict_from_generate=True,
160
+ evaluate_during_training=True,
161
+ do_train=True,
162
+ do_eval=True,
163
+ logging_steps=1000,
164
+ save_steps=1000,
165
+ eval_steps=1000,
166
+ overwrite_output_dir=True,
167
+ warmup_steps=2000,
168
+ save_total_limit=3,
169
+ fp16=True,
170
+ )
171
+
172
+ # instantiate trainer
173
+ trainer = Trainer(
174
+ model=model,
175
+ args=training_args,
176
+ compute_metrics=compute_metrics,
177
+ train_dataset=train_dataset,
178
+ eval_dataset=val_dataset,
179
+ )
180
+
181
+ # start training
182
+ trainer.train()
183
+ ```
184
+
185
+ ## Evaluation
186
+
187
+ The following script evaluates the model on the test set of
188
+ CNN/Daily Mail.
189
+
190
+ ```python
191
+ #!/usr/bin/env python3
192
+ import nlp
193
+ from transformers import RobertaTokenizer, EncoderDecoderModel
194
+
195
+ tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
196
+ model = EncoderDecoderModel.from_pretrained("patrickvonplaten/roberta2roberta-cnn_dailymail-fp16")
197
+ model.to("cuda")
198
+
199
+ test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test")
200
+ batch_size = 128
201
+
202
+
203
+ # map data correctly
204
+ def generate_summary(batch):
205
+ # Tokenizer will automatically set [BOS] <text> [EOS]
206
+ # cut off at BERT max length 512
207
+ inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
208
+ input_ids = inputs.input_ids.to("cuda")
209
+ attention_mask = inputs.attention_mask.to("cuda")
210
+
211
+ outputs = model.generate(input_ids, attention_mask=attention_mask)
212
+
213
+ # all special tokens including will be removed
214
+ output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True)
215
+
216
+ batch["pred"] = output_str
217
+
218
+ return batch
219
+
220
+
221
+ results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"])
222
+
223
+ # load rouge for validation
224
+ rouge = nlp.load_metric("rouge")
225
+
226
+ pred_str = results["pred"]
227
+ label_str = results["highlights"]
228
+
229
+ rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid
230
+
231
+ print(rouge_output)
232
+ ```
233
+
234
+ The obtained results should be:
235
+
236
+ | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure |
237
+ |----------|:-------------:|:------:|:------:|
238
+ | **CNN/Daily Mail** | 15.79 | 19.05 | **16.79** |