Patrick von Platen
commited on
Commit
·
cc9f5a4
1
Parent(s):
316f45c
add all files
Browse files- README.md +109 -0
- alphabet.json +1 -0
- config.json +113 -0
- language_model/4-gram.bin +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +0 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- librispeech_asr
|
5 |
+
tags:
|
6 |
+
- speech
|
7 |
+
- audio
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- hf-asr-leaderboard
|
10 |
+
license: apache-2.0
|
11 |
+
model-index:
|
12 |
+
- name: wav2vec2-conformer-rel-pos-large-960h-ft
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: Librispeech (clean)
|
19 |
+
type: librispeech_asr
|
20 |
+
args: en
|
21 |
+
metrics:
|
22 |
+
- name: Test WER
|
23 |
+
type: wer
|
24 |
+
value: 1.96
|
25 |
+
---
|
26 |
+
|
27 |
+
# Wav2Vec2-Conformer-Large-960h with Rotary Position Embeddings
|
28 |
+
|
29 |
+
[Facebook's Wav2Vec2 Conformer (TODO-add link)]()
|
30 |
+
|
31 |
+
Wav2Vec2 Conformer with rotary position embeddings, pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
|
32 |
+
|
33 |
+
[Paper (TODO)](https://arxiv.org/abs/2006.11477)
|
34 |
+
|
35 |
+
Authors: ...
|
36 |
+
|
37 |
+
**Abstract**
|
38 |
+
|
39 |
+
...
|
40 |
+
|
41 |
+
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
|
42 |
+
|
43 |
+
|
44 |
+
# Usage
|
45 |
+
|
46 |
+
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC
|
50 |
+
from datasets import load_dataset
|
51 |
+
import torch
|
52 |
+
|
53 |
+
# load model and processor
|
54 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
|
55 |
+
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
|
56 |
+
|
57 |
+
# load dummy dataset and read soundfiles
|
58 |
+
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
59 |
+
|
60 |
+
# tokenize
|
61 |
+
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
|
62 |
+
|
63 |
+
# retrieve logits
|
64 |
+
logits = model(input_values).logits
|
65 |
+
|
66 |
+
# take argmax and decode
|
67 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
68 |
+
transcription = processor.batch_decode(predicted_ids)
|
69 |
+
```
|
70 |
+
|
71 |
+
## Evaluation
|
72 |
+
|
73 |
+
This code snippet shows how to evaluate **facebook/wav2vec2-conformer-rope-large-960h-ft** on LibriSpeech's "clean" and "other" test data.
|
74 |
+
|
75 |
+
```python
|
76 |
+
from datasets import load_dataset
|
77 |
+
from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor
|
78 |
+
import torch
|
79 |
+
from jiwer import wer
|
80 |
+
|
81 |
+
|
82 |
+
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
83 |
+
|
84 |
+
model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft").to("cuda")
|
85 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
|
86 |
+
|
87 |
+
def map_to_pred(batch):
|
88 |
+
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
|
89 |
+
input_values = inputs.input_values.to("cuda")
|
90 |
+
attention_mask = inputs.attention_mask.to("cuda")
|
91 |
+
|
92 |
+
with torch.no_grad():
|
93 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
94 |
+
|
95 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
96 |
+
transcription = processor.batch_decode(predicted_ids)
|
97 |
+
batch["transcription"] = transcription
|
98 |
+
return batch
|
99 |
+
|
100 |
+
result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
|
101 |
+
|
102 |
+
print("WER:", wer(result["text"], result["transcription"]))
|
103 |
+
```
|
104 |
+
|
105 |
+
*Result (WER)*:
|
106 |
+
|
107 |
+
| "clean" | "other" |
|
108 |
+
|---|---|
|
109 |
+
| 1.96 | 3.98 |
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": ["", "<s>", "</s>", "\u2047", " ", "E", "T", "A", "O", "N", "I", "H", "S", "R", "D", "L", "U", "M", "W", "C", "F", "G", "Y", "P", "B", "V", "K", "'", "X", "J", "Q", "Z"], "is_bpe": false}
|
config.json
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.1,
|
3 |
+
"adapter_kernel_size": 3,
|
4 |
+
"adapter_stride": 2,
|
5 |
+
"add_adapter": false,
|
6 |
+
"apply_spec_augment": true,
|
7 |
+
"architectures": [
|
8 |
+
"Wav2Vec2ConformerForCTC"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"classifier_proj_size": 256,
|
13 |
+
"codevector_dim": 768,
|
14 |
+
"conformer_conv_dropout": 0.1,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_depthwise_kernel_size": 31,
|
18 |
+
"conv_dim": [
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512,
|
25 |
+
512
|
26 |
+
],
|
27 |
+
"conv_kernel": [
|
28 |
+
10,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
3,
|
33 |
+
2,
|
34 |
+
2
|
35 |
+
],
|
36 |
+
"conv_stride": [
|
37 |
+
5,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2,
|
43 |
+
2
|
44 |
+
],
|
45 |
+
"ctc_loss_reduction": "sum",
|
46 |
+
"ctc_zero_infinity": false,
|
47 |
+
"diversity_loss_weight": 0.1,
|
48 |
+
"do_stable_layer_norm": true,
|
49 |
+
"eos_token_id": 2,
|
50 |
+
"feat_extract_activation": "gelu",
|
51 |
+
"feat_extract_dropout": 0.0,
|
52 |
+
"feat_extract_norm": "layer",
|
53 |
+
"feat_proj_dropout": 0.1,
|
54 |
+
"feat_quantizer_dropout": 0.0,
|
55 |
+
"final_dropout": 0.1,
|
56 |
+
"gradient_checkpointing": false,
|
57 |
+
"hidden_act": "swish",
|
58 |
+
"hidden_dropout": 0.1,
|
59 |
+
"hidden_dropout_prob": 0.1,
|
60 |
+
"hidden_size": 1024,
|
61 |
+
"initializer_range": 0.02,
|
62 |
+
"intermediate_size": 4096,
|
63 |
+
"layer_norm_eps": 1e-05,
|
64 |
+
"layerdrop": 0.0,
|
65 |
+
"mask_feature_length": 10,
|
66 |
+
"mask_feature_min_masks": 0,
|
67 |
+
"mask_feature_prob": 0.0,
|
68 |
+
"mask_time_length": 10,
|
69 |
+
"mask_time_min_masks": 2,
|
70 |
+
"mask_time_prob": 0.05,
|
71 |
+
"max_source_positions": 5000,
|
72 |
+
"model_type": "wav2vec2-conformer",
|
73 |
+
"num_adapter_layers": 3,
|
74 |
+
"num_attention_heads": 16,
|
75 |
+
"num_codevector_groups": 2,
|
76 |
+
"num_codevectors_per_group": 320,
|
77 |
+
"num_conv_pos_embedding_groups": 16,
|
78 |
+
"num_conv_pos_embeddings": 128,
|
79 |
+
"num_feat_extract_layers": 7,
|
80 |
+
"num_hidden_layers": 24,
|
81 |
+
"num_negatives": 100,
|
82 |
+
"output_hidden_size": 1024,
|
83 |
+
"pad_token_id": 0,
|
84 |
+
"position_embeddings_type": "rotary",
|
85 |
+
"proj_codevector_dim": 768,
|
86 |
+
"rotary_embedding_base": 10000,
|
87 |
+
"tdnn_dilation": [
|
88 |
+
1,
|
89 |
+
2,
|
90 |
+
3,
|
91 |
+
1,
|
92 |
+
1
|
93 |
+
],
|
94 |
+
"tdnn_dim": [
|
95 |
+
512,
|
96 |
+
512,
|
97 |
+
512,
|
98 |
+
512,
|
99 |
+
1500
|
100 |
+
],
|
101 |
+
"tdnn_kernel": [
|
102 |
+
5,
|
103 |
+
3,
|
104 |
+
3,
|
105 |
+
1,
|
106 |
+
1
|
107 |
+
],
|
108 |
+
"torch_dtype": "float32",
|
109 |
+
"transformers_version": "4.19.0.dev0",
|
110 |
+
"use_weighted_layer_sum": false,
|
111 |
+
"vocab_size": 32,
|
112 |
+
"xvector_output_dim": 512
|
113 |
+
}
|
language_model/4-gram.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e674d4a61df15bef37cd49183dc4fb087aaa3d7819d0ff8347068a880f033c61
|
3 |
+
size 3124591979
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:665a23a077e25751f27d2580b7d3d222d00de5954b752b8661974f33dc005053
|
3 |
+
size 2373994447
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|", "replace_word_delimiter_char": " ", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2Processor"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 1, "<pad>": 0, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31}
|