Commit
·
4ca3f1c
1
Parent(s):
3a39c0a
Upload LunarLandar-v2 with PPO
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLandar-v2.zip +3 -0
- ppo-LunarLandar-v2/_stable_baselines3_version +1 -0
- ppo-LunarLandar-v2/data +99 -0
- ppo-LunarLandar-v2/policy.optimizer.pth +3 -0
- ppo-LunarLandar-v2/policy.pth +3 -0
- ppo-LunarLandar-v2/pytorch_variables.pth +3 -0
- ppo-LunarLandar-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 227.68 +/- 74.98
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x787816ac4310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x787816ac43a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x787816ac4430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x787816ac44c0>", "_build": "<function ActorCriticPolicy._build at 0x787816ac4550>", "forward": "<function ActorCriticPolicy.forward at 0x787816ac45e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x787816ac4670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x787816ac4700>", "_predict": "<function ActorCriticPolicy._predict at 0x787816ac4790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x787816ac4820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x787816ac48b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x787816ac4940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x787816c5ad80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699302907184533793, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr/gj3V1zo/ukkRvSnIbL4kTNE7EBJoPQAAAAAAAAAA82/JvUDmWz8y1mM4H0Skvs9vAr1W7Iy9AAAAAAAAAADmTry99txuuqNH7LS2P6Owur5Nur54TzQAAIA/AACAP/PQhb17eqq6Zu3GulyjrrX3lOC5eEbkOQAAgD8AAIA/nfOSvjZRnT7YQzU+HsyJvnjmur3cyzY9AAAAAAAAAABADNM9l9MdP/trVD3zrYe+vuBoPZDXyjwAAAAAAAAAAJqg0T4nC2A/enydPcAGb77fZ04+fU6MvQAAAAAAAAAAZsm3PXh42zx2ZVO+MTpgviEMAb3Tn068AAAAAAAAAACiDpe+wdx4Phx+SD4tGlC+hoYXvNI/uD0AAAAAAAAAAJqRWjt+AbE/s8hxPPDjib5Qqwk75tMDPQAAAAAAAAAA2jznvTw6lT7mIf09yemCvjL7MDxvYRm9AAAAAAAAAABaTb49j7YvuhE1qzcXAIoyY+aWu+Yjy7YAAIA/AACAPzO/GLwRC0M+DXMMPiPfXb6iiZA8U5H0PAAAAAAAAAAAE+U7vuFLtLxqsMo6ZAG0OZxnHz5IXz66AACAPwAAAACqv1a+qHyLP9IjM762ZsS+F1wmvt4YiT0AAAAAAAAAAB00nj5W7jg/+IB5vlRDlr4m/cw84hbWvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/eT2nKnvWMAWyUTXEBjAF0lEdAlptFOoHcDnV9lChoBkdAb5tgCOmzjWgHTYYBaAhHQJacV2dNFjN1fZQoaAZHQG9W0R3/xUhoB01bAmgIR0CWnFgam4y5dX2UKGgGR0Bw0Ywi7kGSaAdNogNoCEdAlpzVDv3JxXV9lChoBkdAcb6QoCuEEmgHTVICaAhHQJadAguAZsN1fZQoaAZHQG//KR2bG3poB02EAWgIR0CWnbOdGy5adX2UKGgGR0BxfCRA8jiXaAdNngJoCEdAlqB8cENe+nV9lChoBkdAcQ8/Mnqmj2gHTXABaAhHQJag7Vz6rNp1fZQoaAZHQG6KW4/eLvVoB02IAWgIR0CWoZZXuE26dX2UKGgGR0BwUdzySV4YaAdNrgJoCEdAlqMeuV5a/3V9lChoBkdAY+/iPQv6CWgHTegDaAhHQJami8XenAJ1fZQoaAZHQEFC8bJfYz1oB0vqaAhHQJamvHmzSkV1fZQoaAZHQEvlf9gnc+JoB00rAWgIR0CWrUPLxI8RdX2UKGgGR0BlcCD0163RaAdN6ANoCEdAlrCDujRD1HV9lChoBkdAbggnZ00WM2gHTWwBaAhHQJa0QnogV451fZQoaAZHQHBGnS8an75oB02NAWgIR0CWtOQzDXOGdX2UKGgGR0Bvv3gLqlguaAdNUwFoCEdAlrb9o8IRiHV9lChoBkdAbxq9qUNayWgHTR8CaAhHQJa42NAC4jN1fZQoaAZHQGQ9LWRRuTBoB03oA2gIR0CWuup84PwvdX2UKGgGR0BvKhtHhCMQaAdNqAFoCEdAlr6tWluWKXV9lChoBkdAcIZhJiAlOWgHTcgBaAhHQJbVhL/S6Ud1fZQoaAZHQG9VirksBhhoB01XAmgIR0CW1glqJuVHdX2UKGgGR0BrObbi6xxDaAdNmgFoCEdAltcWIwdsBXV9lChoBkdAbhNwS8J2MmgHTQsDaAhHQJbX3Em6XjV1fZQoaAZHQG3WMJ6Y3NtoB02CAmgIR0CW1+nRLK3edX2UKGgGR0BxWVy8zyjIaAdNtwFoCEdAlthxD5TIenV9lChoBkdAcQD+g13t8mgHTUIDaAhHQJbZjpu/Dcd1fZQoaAZHQGx9pl8PWhBoB017AWgIR0CW27ZSvTw2dX2UKGgGR0Bwc/IKc/dJaAdNUAFoCEdAltvu7lJYknV9lChoBkdAb1ftKqXF+GgHTTIBaAhHQJbdqQ2dd3V1fZQoaAZHQHIxs5XEIgNoB02sAmgIR0CW3lJHRTjvdX2UKGgGR0ByWcGQjlgdaAdNSQFoCEdAluC7CWNWEXV9lChoBkdAcSHg8r7O3WgHTcsBaAhHQJbg98F6iTN1fZQoaAZHQE+dDk2gnMNoB00EAWgIR0CW451WsA/+dX2UKGgGR0Bv0iZOSGJvaAdNiQJoCEdAlubLLt/nXHV9lChoBkdAb4NB8hLXc2gHTR8BaAhHQJbnDxhDw6R1fZQoaAZHQHE3Wf029+RoB00QAmgIR0CW52PlMh5gdX2UKGgGR0BxSuzRhMJyaAdNJgJoCEdAludlvddmhHV9lChoBkdAcOrekYXO4WgHTY4BaAhHQJbpa6iCaql1fZQoaAZHQG/LFKkEcKhoB02+AWgIR0CW6+BY3eendX2UKGgGR0BxSMka/ATJaAdNPwFoCEdAluxT8k2P1nV9lChoBkdAcSypKSPluGgHTaABaAhHQJbtWSEDhcZ1fZQoaAZHQHHt1ejVQRBoB03DAWgIR0CW7dnhKlHjdX2UKGgGR0BvkvRiPQv6aAdNHQFoCEdAlvCSG8EmpnV9lChoBkdAcg4StvGZNWgHTesBaAhHQJbwxHf/FR51fZQoaAZHQHBMH7xd6cBoB02oAWgIR0CW8fqYJE6UdX2UKGgGR0BxeqSzPa+OaAdNQQFoCEdAlvMBw6ySm3V9lChoBkdAcEZLpRoAXGgHTZ0BaAhHQJbz+jj7yhB1fZQoaAZHQG/t89fTkQxoB02rAWgIR0CW9ZTl1bJPdX2UKGgGR0BNfQaR6nivaAdNBgFoCEdAlvZo5cTrV3V9lChoBkdAcedNiYsunWgHTW0BaAhHQJb8L6nBLwp1fZQoaAZHQHGAAxBVuJloB01rAWgIR0CW/NFefI0ZdX2UKGgGR0Bwu0zJp35faAdNVAFoCEdAlwC7ulXRxHV9lChoBkdAbPPPva11GWgHTQwCaAhHQJcGjsXzlLh1fZQoaAZHQG16eg+QlrxoB01AAWgIR0CXB6tLcsUZdX2UKGgGR0Bvp7ifg75maAdNxgFoCEdAlwkbKq4pdHV9lChoBkdAb7jfTCtRvWgHTTQBaAhHQJcJmp4rz5J1fZQoaAZHQG5TctwrDqJoB00bAmgIR0CXCdPRArxzdX2UKGgGR0BviKlBQemvaAdNmgFoCEdAlwqnO4XoDHV9lChoBkdAbr4RNh3JP2gHTZUBaAhHQJcek/C66J91fZQoaAZHQG5idPk7wKBoB01QAmgIR0CXH1df9gnddX2UKGgGR0Bsz+VVxS5zaAdN/AFoCEdAlx97ZrYXf3V9lChoBkdAb9wTbFjur2gHTS8BaAhHQJch3Lns9jh1fZQoaAZHQHJCD1Gsmv5oB00hAmgIR0CXItCF9KEndX2UKGgGR0BwXRJGvwEyaAdNlgJoCEdAlyOJaJQ+EHV9lChoBkdAcZj0Ltu1nmgHTZABaAhHQJcjrgJkXk51fZQoaAZHQHCCbtE5QxhoB02zAWgIR0CXJMX1rZandX2UKGgGR0BIIKraM72daAdL0mgIR0CXJThxYJVsdX2UKGgGR0Bw5PY8Md92aAdNlQNoCEdAlycljAi3X3V9lChoBkdAb25sqJ/G2mgHTV0BaAhHQJcoBL6DXe51fZQoaAZHQHB1jhUBGQVoB01LAWgIR0CXKlSXt0FKdX2UKGgGR0BwHAoy9EkTaAdNYQFoCEdAlyuE+LWI43V9lChoBkdAcWIfQrtmc2gHTS0BaAhHQJctVdLQHA11fZQoaAZHQCnwNEw35vdoB0voaAhHQJcu2zOX3QF1fZQoaAZHQHFSi/O+qR5oB007AWgIR0CXL1bj94u9dX2UKGgGR0Bwku/vfCQ+aAdNWwFoCEdAlzEsDr7fpHV9lChoBkdAcgT2rn1WbWgHTUQBaAhHQJc2pnBciW51fZQoaAZHQHIXoIKMNttoB01BAWgIR0CXOXVcD8tPdX2UKGgGR0BjGvzYmLLqaAdN6ANoCEdAlzyIEbHZK3V9lChoBkdAcgS0v4/NaGgHTaoBaAhHQJc+6Cdz4lB1fZQoaAZHQG+y1Ed/8VJoB015AWgIR0CXQVjSofjkdX2UKGgGR0BuyhHNHH3laAdNQwFoCEdAl0KNGI9C/3V9lChoBkdAbvqfYBeXzGgHTfoBaAhHQJdFkERradt1fZQoaAZHQHBTjhP0qYtoB01nAWgIR0CXRoABT4tZdX2UKGgGR0ByvnaCcwxnaAdNqwFoCEdAl0ewv6CUYHV9lChoBkdAcJ5JLM9r42gHTWQBaAhHQJdIHej2zv91fZQoaAZHQHAIyqQzUI9oB02DAWgIR0CXSVh6By0bdX2UKGgGR0BtQ/C0ngHeaAdN9gFoCEdAl0mj/ZM+NnV9lChoBkdAbzxU5uIhyWgHTVMBaAhHQJdMjbj94u91fZQoaAZHQHAc3b7CSA9oB03MAWgIR0CXTvprULDydX2UKGgGR0Btlwl+mWMTaAdNYwFoCEdAl08tvGZNPHV9lChoBkdAa9WuanaWX2gHTUIBaAhHQJdQrNNahYh1fZQoaAZHQHJ39RvWH1xoB01qAWgIR0CXUT0oBq9HdX2UKGgGR0BwY7Q6ZH/caAdNEwFoCEdAl1FIjv/ipHV9lChoBkdAYliAMDwH7mgHTegDaAhHQJdR+UHIIWx1fZQoaAZHQHAgv0mMOwxoB006AWgIR0CXUheyAxzrdX2UKGgGR0Biti3PRiPRaAdN6ANoCEdAl1LvEGZ/kXV9lChoBkdAccHSOinHemgHTRcBaAhHQJdTY6aLGaR1fZQoaAZHQB2XoPkJa7poB0vgaAhHQJdT2Hh0heR1fZQoaAZHQG+7sXrMTvloB01EAWgIR0CXVYdYnv2HdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLandar-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:907d03a70fafcfb4996a61c10ecbfd11415a56c31d42b9c428564e53dde254dc
|
3 |
+
size 148050
|
ppo-LunarLandar-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLandar-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x787816ac4310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x787816ac43a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x787816ac4430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x787816ac44c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x787816ac4550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x787816ac45e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x787816ac4670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x787816ac4700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x787816ac4790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x787816ac4820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x787816ac48b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x787816ac4940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x787816c5ad80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1699302907184533793,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr/gj3V1zo/ukkRvSnIbL4kTNE7EBJoPQAAAAAAAAAA82/JvUDmWz8y1mM4H0Skvs9vAr1W7Iy9AAAAAAAAAADmTry99txuuqNH7LS2P6Owur5Nur54TzQAAIA/AACAP/PQhb17eqq6Zu3GulyjrrX3lOC5eEbkOQAAgD8AAIA/nfOSvjZRnT7YQzU+HsyJvnjmur3cyzY9AAAAAAAAAABADNM9l9MdP/trVD3zrYe+vuBoPZDXyjwAAAAAAAAAAJqg0T4nC2A/enydPcAGb77fZ04+fU6MvQAAAAAAAAAAZsm3PXh42zx2ZVO+MTpgviEMAb3Tn068AAAAAAAAAACiDpe+wdx4Phx+SD4tGlC+hoYXvNI/uD0AAAAAAAAAAJqRWjt+AbE/s8hxPPDjib5Qqwk75tMDPQAAAAAAAAAA2jznvTw6lT7mIf09yemCvjL7MDxvYRm9AAAAAAAAAABaTb49j7YvuhE1qzcXAIoyY+aWu+Yjy7YAAIA/AACAPzO/GLwRC0M+DXMMPiPfXb6iiZA8U5H0PAAAAAAAAAAAE+U7vuFLtLxqsMo6ZAG0OZxnHz5IXz66AACAPwAAAACqv1a+qHyLP9IjM762ZsS+F1wmvt4YiT0AAAAAAAAAAB00nj5W7jg/+IB5vlRDlr4m/cw84hbWvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/eT2nKnvWMAWyUTXEBjAF0lEdAlptFOoHcDnV9lChoBkdAb5tgCOmzjWgHTYYBaAhHQJacV2dNFjN1fZQoaAZHQG9W0R3/xUhoB01bAmgIR0CWnFgam4y5dX2UKGgGR0Bw0Ywi7kGSaAdNogNoCEdAlpzVDv3JxXV9lChoBkdAcb6QoCuEEmgHTVICaAhHQJadAguAZsN1fZQoaAZHQG//KR2bG3poB02EAWgIR0CWnbOdGy5adX2UKGgGR0BxfCRA8jiXaAdNngJoCEdAlqB8cENe+nV9lChoBkdAcQ8/Mnqmj2gHTXABaAhHQJag7Vz6rNp1fZQoaAZHQG6KW4/eLvVoB02IAWgIR0CWoZZXuE26dX2UKGgGR0BwUdzySV4YaAdNrgJoCEdAlqMeuV5a/3V9lChoBkdAY+/iPQv6CWgHTegDaAhHQJami8XenAJ1fZQoaAZHQEFC8bJfYz1oB0vqaAhHQJamvHmzSkV1fZQoaAZHQEvlf9gnc+JoB00rAWgIR0CWrUPLxI8RdX2UKGgGR0BlcCD0163RaAdN6ANoCEdAlrCDujRD1HV9lChoBkdAbggnZ00WM2gHTWwBaAhHQJa0QnogV451fZQoaAZHQHBGnS8an75oB02NAWgIR0CWtOQzDXOGdX2UKGgGR0Bvv3gLqlguaAdNUwFoCEdAlrb9o8IRiHV9lChoBkdAbxq9qUNayWgHTR8CaAhHQJa42NAC4jN1fZQoaAZHQGQ9LWRRuTBoB03oA2gIR0CWuup84PwvdX2UKGgGR0BvKhtHhCMQaAdNqAFoCEdAlr6tWluWKXV9lChoBkdAcIZhJiAlOWgHTcgBaAhHQJbVhL/S6Ud1fZQoaAZHQG9VirksBhhoB01XAmgIR0CW1glqJuVHdX2UKGgGR0BrObbi6xxDaAdNmgFoCEdAltcWIwdsBXV9lChoBkdAbhNwS8J2MmgHTQsDaAhHQJbX3Em6XjV1fZQoaAZHQG3WMJ6Y3NtoB02CAmgIR0CW1+nRLK3edX2UKGgGR0BxWVy8zyjIaAdNtwFoCEdAlthxD5TIenV9lChoBkdAcQD+g13t8mgHTUIDaAhHQJbZjpu/Dcd1fZQoaAZHQGx9pl8PWhBoB017AWgIR0CW27ZSvTw2dX2UKGgGR0Bwc/IKc/dJaAdNUAFoCEdAltvu7lJYknV9lChoBkdAb1ftKqXF+GgHTTIBaAhHQJbdqQ2dd3V1fZQoaAZHQHIxs5XEIgNoB02sAmgIR0CW3lJHRTjvdX2UKGgGR0ByWcGQjlgdaAdNSQFoCEdAluC7CWNWEXV9lChoBkdAcSHg8r7O3WgHTcsBaAhHQJbg98F6iTN1fZQoaAZHQE+dDk2gnMNoB00EAWgIR0CW451WsA/+dX2UKGgGR0Bv0iZOSGJvaAdNiQJoCEdAlubLLt/nXHV9lChoBkdAb4NB8hLXc2gHTR8BaAhHQJbnDxhDw6R1fZQoaAZHQHE3Wf029+RoB00QAmgIR0CW52PlMh5gdX2UKGgGR0BxSuzRhMJyaAdNJgJoCEdAludlvddmhHV9lChoBkdAcOrekYXO4WgHTY4BaAhHQJbpa6iCaql1fZQoaAZHQG/LFKkEcKhoB02+AWgIR0CW6+BY3eendX2UKGgGR0BxSMka/ATJaAdNPwFoCEdAluxT8k2P1nV9lChoBkdAcSypKSPluGgHTaABaAhHQJbtWSEDhcZ1fZQoaAZHQHHt1ejVQRBoB03DAWgIR0CW7dnhKlHjdX2UKGgGR0BvkvRiPQv6aAdNHQFoCEdAlvCSG8EmpnV9lChoBkdAcg4StvGZNWgHTesBaAhHQJbwxHf/FR51fZQoaAZHQHBMH7xd6cBoB02oAWgIR0CW8fqYJE6UdX2UKGgGR0BxeqSzPa+OaAdNQQFoCEdAlvMBw6ySm3V9lChoBkdAcEZLpRoAXGgHTZ0BaAhHQJbz+jj7yhB1fZQoaAZHQG/t89fTkQxoB02rAWgIR0CW9ZTl1bJPdX2UKGgGR0BNfQaR6nivaAdNBgFoCEdAlvZo5cTrV3V9lChoBkdAcedNiYsunWgHTW0BaAhHQJb8L6nBLwp1fZQoaAZHQHGAAxBVuJloB01rAWgIR0CW/NFefI0ZdX2UKGgGR0Bwu0zJp35faAdNVAFoCEdAlwC7ulXRxHV9lChoBkdAbPPPva11GWgHTQwCaAhHQJcGjsXzlLh1fZQoaAZHQG16eg+QlrxoB01AAWgIR0CXB6tLcsUZdX2UKGgGR0Bvp7ifg75maAdNxgFoCEdAlwkbKq4pdHV9lChoBkdAb7jfTCtRvWgHTTQBaAhHQJcJmp4rz5J1fZQoaAZHQG5TctwrDqJoB00bAmgIR0CXCdPRArxzdX2UKGgGR0BviKlBQemvaAdNmgFoCEdAlwqnO4XoDHV9lChoBkdAbr4RNh3JP2gHTZUBaAhHQJcek/C66J91fZQoaAZHQG5idPk7wKBoB01QAmgIR0CXH1df9gnddX2UKGgGR0Bsz+VVxS5zaAdN/AFoCEdAlx97ZrYXf3V9lChoBkdAb9wTbFjur2gHTS8BaAhHQJch3Lns9jh1fZQoaAZHQHJCD1Gsmv5oB00hAmgIR0CXItCF9KEndX2UKGgGR0BwXRJGvwEyaAdNlgJoCEdAlyOJaJQ+EHV9lChoBkdAcZj0Ltu1nmgHTZABaAhHQJcjrgJkXk51fZQoaAZHQHCCbtE5QxhoB02zAWgIR0CXJMX1rZandX2UKGgGR0BIIKraM72daAdL0mgIR0CXJThxYJVsdX2UKGgGR0Bw5PY8Md92aAdNlQNoCEdAlycljAi3X3V9lChoBkdAb25sqJ/G2mgHTV0BaAhHQJcoBL6DXe51fZQoaAZHQHB1jhUBGQVoB01LAWgIR0CXKlSXt0FKdX2UKGgGR0BwHAoy9EkTaAdNYQFoCEdAlyuE+LWI43V9lChoBkdAcWIfQrtmc2gHTS0BaAhHQJctVdLQHA11fZQoaAZHQCnwNEw35vdoB0voaAhHQJcu2zOX3QF1fZQoaAZHQHFSi/O+qR5oB007AWgIR0CXL1bj94u9dX2UKGgGR0Bwku/vfCQ+aAdNWwFoCEdAlzEsDr7fpHV9lChoBkdAcgT2rn1WbWgHTUQBaAhHQJc2pnBciW51fZQoaAZHQHIXoIKMNttoB01BAWgIR0CXOXVcD8tPdX2UKGgGR0BjGvzYmLLqaAdN6ANoCEdAlzyIEbHZK3V9lChoBkdAcgS0v4/NaGgHTaoBaAhHQJc+6Cdz4lB1fZQoaAZHQG+y1Ed/8VJoB015AWgIR0CXQVjSofjkdX2UKGgGR0BuyhHNHH3laAdNQwFoCEdAl0KNGI9C/3V9lChoBkdAbvqfYBeXzGgHTfoBaAhHQJdFkERradt1fZQoaAZHQHBTjhP0qYtoB01nAWgIR0CXRoABT4tZdX2UKGgGR0ByvnaCcwxnaAdNqwFoCEdAl0ewv6CUYHV9lChoBkdAcJ5JLM9r42gHTWQBaAhHQJdIHej2zv91fZQoaAZHQHAIyqQzUI9oB02DAWgIR0CXSVh6By0bdX2UKGgGR0BtQ/C0ngHeaAdN9gFoCEdAl0mj/ZM+NnV9lChoBkdAbzxU5uIhyWgHTVMBaAhHQJdMjbj94u91fZQoaAZHQHAc3b7CSA9oB03MAWgIR0CXTvprULDydX2UKGgGR0Btlwl+mWMTaAdNYwFoCEdAl08tvGZNPHV9lChoBkdAa9WuanaWX2gHTUIBaAhHQJdQrNNahYh1fZQoaAZHQHJ39RvWH1xoB01qAWgIR0CXUT0oBq9HdX2UKGgGR0BwY7Q6ZH/caAdNEwFoCEdAl1FIjv/ipHV9lChoBkdAYliAMDwH7mgHTegDaAhHQJdR+UHIIWx1fZQoaAZHQHAgv0mMOwxoB006AWgIR0CXUheyAxzrdX2UKGgGR0Biti3PRiPRaAdN6ANoCEdAl1LvEGZ/kXV9lChoBkdAccHSOinHemgHTRcBaAhHQJdTY6aLGaR1fZQoaAZHQB2XoPkJa7poB0vgaAhHQJdT2Hh0heR1fZQoaAZHQG+7sXrMTvloB01EAWgIR0CXVYdYnv2HdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLandar-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8f564d8e813408d9ae5444c52e58fc3e001b7223db1eb165a8250485399c535
|
3 |
+
size 88362
|
ppo-LunarLandar-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9debeeede8e692778fb1744258c406c1122d5e6138b04d1266cb08e5a0fd73d4
|
3 |
+
size 43762
|
ppo-LunarLandar-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLandar-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (196 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 227.67629030000003, "std_reward": 74.98314041764937, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-06T21:49:41.895903"}
|