File size: 2,833 Bytes
51f763f 0c146e7 2ca7636 51f763f 2ca7636 51f763f 2ca7636 51f763f 2ca7636 51f763f 2ca7636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
language: ko
license: mit
library_name: transformers
pipeline_tag: text2text-generation
---
# FLAN T5
[Source Code](https://github.com/paust-team/pko-t5/tree/main/pkot5/flan)
FLAN T5λ [paust/pko-t5-large](https://huggingface.co/paust/pko-t5-large) λͺ¨λΈμ κΈ°λ°μΌλ‘ λ€μν νμ€ν¬λ₯Ό instruction finetuningμ ν΅ν΄μ λ§λ λͺ¨λΈμ
λλ€.
νμ¬ κ³μ Instruction Finetuning μ μ§ννλ©΄μ μ€κ°κ²°κ³Όλ₯Ό λͺ¨λΈλ‘ μ
λ°μ΄νΈνκ³ μμ΅λλ€.
## νμ΅λ νμ€ν¬
| Task name | Task type |
|----------------------------|----------------|
| NSMC | Classification |
| Klue Ynat | Classification |
| KorNLI | Classification |
| KorSTS | Classification |
| QuestionPair | Classification |
| Klue STS | Classification |
| AIHub news Summary | Summarization |
| AIHub document Summary | Summarization |
| AIHub book Summary | Summarization |
| AIHub conversation Summary | Summarization |
| AIHub ko-to-en | Translation |
| AIHub ko-to-en Expert | Translation |
| AIHub ko-to-en Tech | Translation |
| AIHub ko-to-en social | Translation |
| AIHub ko-to-jp | Translation |
| AIHub ko-to-cn Tech | Translation |
| AIHub Translation Corpus | Translation |
| korquad | QA |
| Klue MRC | QA |
| AIHub mindslab's MRC | QA |
## λͺ¨λΈ
- [Hugginface λ§ν¬](https://huggingface.co/paust/pko-flan-t5-large)
## μ¬μ© μμ
```python
from transformers import T5ForConditionalGeneration, T5TokenizerFast
tokenizer = T5TokenizerFast.from_pretrained('paust/pko-flan-t5-large')
model = T5ForConditionalGeneration.from_pretrained('paust/pko-flan-t5-large', device_map='cuda')
prompt = """μμΈνΉλ³μ(μμΈηΉε₯εΈ, μμ΄: Seoul Metropolitan Government)λ λνλ―Όκ΅ μλμ΄μ μ΅λ λμμ΄λ€. μ μ¬μλλΆν° μ¬λμ΄ κ±°μ£ΌνμμΌλ λ³Έ μμ¬λ λ°±μ 첫 μλ μλ‘μ±μ μμ΄λ‘ νλ€. μΌκ΅μλμλ μ λ΅μ μμΆ©μ§λ‘μ κ³ κ΅¬λ €, λ°±μ , μ λΌκ° λ²κ°μ μ°¨μ§νμμΌλ©°, κ³ λ € μλμλ μμ€μ λ³κΆμ΄ μΈμμ§ λ¨κ²½(εδΊ¬)μΌλ‘ μ΄λ¦νμλ€.
νκ΅μ μλλ μ΄λμ
λκΉ?"""
input_ids = tokenizer(prompt, add_special_tokens=True, return_tensors='pt').input_ids
output_ids = model.generate(input_ids=input_ids.cuda(), max_new_tokens=32, num_beams=12)
text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
print(text) # μμΈνΉλ³μ
```
## License
[PAUST](https://paust.io)μμ λ§λ pko-t5λ [MIT license](https://github.com/paust-team/pko-t5/blob/main/LICENSE) νμ 곡κ°λμ΄ μμ΅λλ€. |