File size: 2,443 Bytes
750f7de feb5784 750f7de feb5784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
tags:
- image-to-text
- image-captioning
- endpoints-template
license: bsd-3-clause
library_name: generic
---
# Fork of [Salesforce/blip-image-captioning-large](https://huggingface.co/Salesforce/blip-image-captioning-large) for a `image-captioning` task on 🤗Inference endpoint.
This repository implements a `custom` task for `image-captioning` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/florentgbelidji/blip_captioning/blob/main/pipeline.py).
To use deploy this model a an Inference Endpoint you have to select `Custom` as task to use the `pipeline.py` file. -> _double check if it is selected_
### expected Request payload
```json
{
"image": "/9j/4AAQSkZJRgA.....", #encoded image
"text": "a photography of a"
}
```
below is an example on how to run a request using Python and `requests`.
## Run Request
1. Use any online image.
```bash
!wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg
```
2.run request
```python
import json
from typing import List
import requests as r
import base64
with open("/content/demo.jpg", "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
ENDPOINT_URL = ""
HF_TOKEN = ""
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": {
"images": [encoded_string], # using the base64 encoded string
"texts": ["a photography of"] # Optional, based on your current class logic
}
})
print(output)
```
Example parameters depending on the decoding strategy:
1. Beam search
```
"parameters": {
"num_beams":5,
"max_length":20
}
```
2. Nucleus sampling
```
"parameters": {
"num_beams":1,
"max_length":20,
"do_sample": True,
"top_k":50,
"top_p":0.95
}
```
3. Contrastive search
```
"parameters": {
"penalty_alpha":0.6,
"top_k":4
"max_length":512
}
```
See [generate()](https://huggingface.co/docs/transformers/v4.25.1/en/main_classes/text_generation#transformers.GenerationMixin.generate) doc for additional detail
expected output
```python
{'captions': ['a photography of a woman and her dog on the beach']}
```
|