updated handler, again
Browse files- handler.py +49 -4
handler.py
CHANGED
@@ -13,21 +13,66 @@ class EndpointHandler():
|
|
13 |
"Salesforce/blip-image-captioning-large"
|
14 |
).to(device)
|
15 |
self.model.eval()
|
|
|
|
|
16 |
|
17 |
def __call__(self, image_data: str) -> dict:
|
18 |
try:
|
|
|
19 |
raw_image = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB")
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
caption = self.processor.batch_decode(out, skip_special_tokens=True)[0]
|
27 |
return {"caption": caption}
|
28 |
except Exception as e:
|
29 |
print(f"Error during processing: {str(e)}")
|
30 |
return {"caption": "", "error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
|
|
|
13 |
"Salesforce/blip-image-captioning-large"
|
14 |
).to(device)
|
15 |
self.model.eval()
|
16 |
+
self.max_length = 16
|
17 |
+
self.num_beams = 4
|
18 |
|
19 |
def __call__(self, image_data: str) -> dict:
|
20 |
try:
|
21 |
+
# Convert base64 encoded image string to a PIL Image
|
22 |
raw_image = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB")
|
23 |
|
24 |
+
# Ensure the image is in RGB mode
|
25 |
+
if raw_image.mode != "RGB":
|
26 |
+
raw_image = raw_image.convert(mode="RGB")
|
27 |
|
28 |
+
# Extract pixel values and move them to the device
|
29 |
+
pixel_values = self.processor(raw_image, return_tensors="pt").pixel_values.to(device)
|
30 |
+
|
31 |
+
# Generate the caption
|
32 |
+
gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams}
|
33 |
+
output_ids = self.model.generate(pixel_values, **gen_kwargs)
|
34 |
+
|
35 |
+
caption = self.processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
36 |
|
|
|
37 |
return {"caption": caption}
|
38 |
except Exception as e:
|
39 |
print(f"Error during processing: {str(e)}")
|
40 |
return {"caption": "", "error": str(e)}
|
41 |
+
|
42 |
+
|
43 |
+
# === Below code works, but getting the following error:
|
44 |
+
# == "error": "argument should be a bytes-like object or ASCII string, not 'dict'"
|
45 |
+
|
46 |
+
# from PIL import Image
|
47 |
+
# import torch
|
48 |
+
# import base64
|
49 |
+
# from io import BytesIO
|
50 |
+
# from transformers import BlipForConditionalGeneration, BlipProcessor
|
51 |
+
|
52 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
53 |
+
|
54 |
+
# class EndpointHandler():
|
55 |
+
# def __init__(self, path=""):
|
56 |
+
# self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
57 |
+
# self.model = BlipForConditionalGeneration.from_pretrained(
|
58 |
+
# "Salesforce/blip-image-captioning-large"
|
59 |
+
# ).to(device)
|
60 |
+
# self.model.eval()
|
61 |
+
|
62 |
+
# def __call__(self, image_data: str) -> dict:
|
63 |
+
# try:
|
64 |
+
# raw_image = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB")
|
65 |
+
|
66 |
+
# processed_input = self.processor(raw_image, return_tensors="pt").to(device)
|
67 |
+
|
68 |
+
# with torch.no_grad():
|
69 |
+
# out = self.model.generate(**processed_input)
|
70 |
+
|
71 |
+
# caption = self.processor.batch_decode(out, skip_special_tokens=True)[0]
|
72 |
+
# return {"caption": caption}
|
73 |
+
# except Exception as e:
|
74 |
+
# print(f"Error during processing: {str(e)}")
|
75 |
+
# return {"caption": "", "error": str(e)}
|
76 |
|
77 |
|
78 |
|