pedutronix commited on
Commit
b96ac5f
·
verified ·
1 Parent(s): 38b3d38

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:5879
8
+ - loss:OnlineContrastiveLoss
9
+ base_model: sentence-transformers/all-mpnet-base-v2
10
+ pipeline_tag: sentence-similarity
11
+ library_name: sentence-transformers
12
+ metrics:
13
+ - cosine_accuracy
14
+ - cosine_accuracy_threshold
15
+ - cosine_f1
16
+ - cosine_f1_threshold
17
+ - cosine_precision
18
+ - cosine_recall
19
+ - cosine_ap
20
+ model-index:
21
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
22
+ results:
23
+ - task:
24
+ type: binary-classification
25
+ name: Binary Classification
26
+ dataset:
27
+ name: company dev
28
+ type: company-dev
29
+ metrics:
30
+ - type: cosine_accuracy
31
+ value: 0.9579500657030223
32
+ name: Cosine Accuracy
33
+ - type: cosine_accuracy_threshold
34
+ value: 0.4625653326511383
35
+ name: Cosine Accuracy Threshold
36
+ - type: cosine_f1
37
+ value: 0.9601990049751243
38
+ name: Cosine F1
39
+ - type: cosine_f1_threshold
40
+ value: 0.4625653326511383
41
+ name: Cosine F1 Threshold
42
+ - type: cosine_precision
43
+ value: 0.9578163771712159
44
+ name: Cosine Precision
45
+ - type: cosine_recall
46
+ value: 0.9625935162094763
47
+ name: Cosine Recall
48
+ - type: cosine_ap
49
+ value: 0.9893021127521446
50
+ name: Cosine Ap
51
+ ---
52
+
53
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
54
+
55
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** Sentence Transformer
61
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
62
+ - **Maximum Sequence Length:** 384 tokens
63
+ - **Output Dimensionality:** 768 dimensions
64
+ - **Similarity Function:** Cosine Similarity
65
+ <!-- - **Training Dataset:** Unknown -->
66
+ <!-- - **Language:** Unknown -->
67
+ <!-- - **License:** Unknown -->
68
+
69
+ ### Model Sources
70
+
71
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
72
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
73
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
74
+
75
+ ### Full Model Architecture
76
+
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
80
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
81
+ (2): Normalize()
82
+ )
83
+ ```
84
+
85
+ ## Usage
86
+
87
+ ### Direct Usage (Sentence Transformers)
88
+
89
+ First install the Sentence Transformers library:
90
+
91
+ ```bash
92
+ pip install -U sentence-transformers
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+ ```python
97
+ from sentence_transformers import SentenceTransformer
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SentenceTransformer("pedutronix/mfds-all-mpnet-base-v2")
101
+ # Run inference
102
+ sentences = [
103
+ 'problems in physical casino establishments',
104
+ 'Overcrowded casino: The casino was too crowded, making it difficult to move around.',
105
+ 'Game crashes after one hour notification: The user experiences the game crashing after receiving a notification that they have played for an hour, interrupting their gaming session, particularly during bonus games.',
106
+ ]
107
+ embeddings = model.encode(sentences)
108
+ print(embeddings.shape)
109
+ # [3, 768]
110
+
111
+ # Get the similarity scores for the embeddings
112
+ similarities = model.similarity(embeddings, embeddings)
113
+ print(similarities.shape)
114
+ # [3, 3]
115
+ ```
116
+
117
+ <!--
118
+ ### Direct Usage (Transformers)
119
+
120
+ <details><summary>Click to see the direct usage in Transformers</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Downstream Usage (Sentence Transformers)
127
+
128
+ You can finetune this model on your own dataset.
129
+
130
+ <details><summary>Click to expand</summary>
131
+
132
+ </details>
133
+ -->
134
+
135
+ <!--
136
+ ### Out-of-Scope Use
137
+
138
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
139
+ -->
140
+
141
+ ## Evaluation
142
+
143
+ ### Metrics
144
+
145
+ #### Binary Classification
146
+
147
+ * Dataset: `company-dev`
148
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
149
+
150
+ | Metric | Value |
151
+ |:--------------------------|:-----------|
152
+ | cosine_accuracy | 0.958 |
153
+ | cosine_accuracy_threshold | 0.4626 |
154
+ | cosine_f1 | 0.9602 |
155
+ | cosine_f1_threshold | 0.4626 |
156
+ | cosine_precision | 0.9578 |
157
+ | cosine_recall | 0.9626 |
158
+ | **cosine_ap** | **0.9893** |
159
+
160
+ <!--
161
+ ## Bias, Risks and Limitations
162
+
163
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
+ -->
165
+
166
+ <!--
167
+ ### Recommendations
168
+
169
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
+ -->
171
+
172
+ ## Training Details
173
+
174
+ ### Training Hyperparameters
175
+ #### Non-Default Hyperparameters
176
+
177
+ - `eval_strategy`: epoch
178
+ - `per_device_train_batch_size`: 128
179
+ - `per_device_eval_batch_size`: 128
180
+ - `learning_rate`: 2e-05
181
+ - `num_train_epochs`: 6
182
+ - `lr_scheduler_type`: cosine
183
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5}
184
+ - `warmup_ratio`: 0.1
185
+ - `load_best_model_at_end`: True
186
+
187
+ #### All Hyperparameters
188
+ <details><summary>Click to expand</summary>
189
+
190
+ - `overwrite_output_dir`: False
191
+ - `do_predict`: False
192
+ - `eval_strategy`: epoch
193
+ - `prediction_loss_only`: True
194
+ - `per_device_train_batch_size`: 128
195
+ - `per_device_eval_batch_size`: 128
196
+ - `per_gpu_train_batch_size`: None
197
+ - `per_gpu_eval_batch_size`: None
198
+ - `gradient_accumulation_steps`: 1
199
+ - `eval_accumulation_steps`: None
200
+ - `torch_empty_cache_steps`: None
201
+ - `learning_rate`: 2e-05
202
+ - `weight_decay`: 0.0
203
+ - `adam_beta1`: 0.9
204
+ - `adam_beta2`: 0.999
205
+ - `adam_epsilon`: 1e-08
206
+ - `max_grad_norm`: 1.0
207
+ - `num_train_epochs`: 6
208
+ - `max_steps`: -1
209
+ - `lr_scheduler_type`: cosine
210
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5}
211
+ - `warmup_ratio`: 0.1
212
+ - `warmup_steps`: 0
213
+ - `log_level`: passive
214
+ - `log_level_replica`: warning
215
+ - `log_on_each_node`: True
216
+ - `logging_nan_inf_filter`: True
217
+ - `save_safetensors`: True
218
+ - `save_on_each_node`: False
219
+ - `save_only_model`: False
220
+ - `restore_callback_states_from_checkpoint`: False
221
+ - `no_cuda`: False
222
+ - `use_cpu`: False
223
+ - `use_mps_device`: False
224
+ - `seed`: 42
225
+ - `data_seed`: None
226
+ - `jit_mode_eval`: False
227
+ - `use_ipex`: False
228
+ - `bf16`: False
229
+ - `fp16`: False
230
+ - `fp16_opt_level`: O1
231
+ - `half_precision_backend`: auto
232
+ - `bf16_full_eval`: False
233
+ - `fp16_full_eval`: False
234
+ - `tf32`: None
235
+ - `local_rank`: 0
236
+ - `ddp_backend`: None
237
+ - `tpu_num_cores`: None
238
+ - `tpu_metrics_debug`: False
239
+ - `debug`: []
240
+ - `dataloader_drop_last`: False
241
+ - `dataloader_num_workers`: 0
242
+ - `dataloader_prefetch_factor`: None
243
+ - `past_index`: -1
244
+ - `disable_tqdm`: False
245
+ - `remove_unused_columns`: True
246
+ - `label_names`: None
247
+ - `load_best_model_at_end`: True
248
+ - `ignore_data_skip`: False
249
+ - `fsdp`: []
250
+ - `fsdp_min_num_params`: 0
251
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
252
+ - `fsdp_transformer_layer_cls_to_wrap`: None
253
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
254
+ - `deepspeed`: None
255
+ - `label_smoothing_factor`: 0.0
256
+ - `optim`: adamw_torch
257
+ - `optim_args`: None
258
+ - `adafactor`: False
259
+ - `group_by_length`: False
260
+ - `length_column_name`: length
261
+ - `ddp_find_unused_parameters`: None
262
+ - `ddp_bucket_cap_mb`: None
263
+ - `ddp_broadcast_buffers`: False
264
+ - `dataloader_pin_memory`: True
265
+ - `dataloader_persistent_workers`: False
266
+ - `skip_memory_metrics`: True
267
+ - `use_legacy_prediction_loop`: False
268
+ - `push_to_hub`: False
269
+ - `resume_from_checkpoint`: None
270
+ - `hub_model_id`: None
271
+ - `hub_strategy`: every_save
272
+ - `hub_private_repo`: None
273
+ - `hub_always_push`: False
274
+ - `gradient_checkpointing`: False
275
+ - `gradient_checkpointing_kwargs`: None
276
+ - `include_inputs_for_metrics`: False
277
+ - `include_for_metrics`: []
278
+ - `eval_do_concat_batches`: True
279
+ - `fp16_backend`: auto
280
+ - `push_to_hub_model_id`: None
281
+ - `push_to_hub_organization`: None
282
+ - `mp_parameters`:
283
+ - `auto_find_batch_size`: False
284
+ - `full_determinism`: False
285
+ - `torchdynamo`: None
286
+ - `ray_scope`: last
287
+ - `ddp_timeout`: 1800
288
+ - `torch_compile`: False
289
+ - `torch_compile_backend`: None
290
+ - `torch_compile_mode`: None
291
+ - `dispatch_batches`: None
292
+ - `split_batches`: None
293
+ - `include_tokens_per_second`: False
294
+ - `include_num_input_tokens_seen`: False
295
+ - `neftune_noise_alpha`: None
296
+ - `optim_target_modules`: None
297
+ - `batch_eval_metrics`: False
298
+ - `eval_on_start`: False
299
+ - `use_liger_kernel`: False
300
+ - `eval_use_gather_object`: False
301
+ - `average_tokens_across_devices`: False
302
+ - `prompts`: None
303
+ - `batch_sampler`: batch_sampler
304
+ - `multi_dataset_batch_sampler`: proportional
305
+
306
+ </details>
307
+
308
+ ### Training Logs
309
+ | Epoch | Step | Training Loss | Validation Loss | company-dev_cosine_ap |
310
+ |:-----:|:----:|:-------------:|:---------------:|:---------------------:|
311
+ | 0 | 0 | - | - | 0.8236 |
312
+ | 1.0 | 46 | 11.5286 | 9.5771 | 0.9728 |
313
+ | 2.0 | 92 | 4.5615 | 6.4393 | 0.9851 |
314
+ | 3.0 | 138 | 2.3018 | 5.9651 | 0.9872 |
315
+ | 4.0 | 184 | 1.1421 | 5.1746 | 0.9877 |
316
+ | 5.0 | 230 | 0.4768 | 4.9731 | 0.9893 |
317
+
318
+
319
+ ### Framework Versions
320
+ - Python: 3.10.15
321
+ - Sentence Transformers: 3.3.1
322
+ - Transformers: 4.47.1
323
+ - PyTorch: 2.5.1+cu124
324
+ - Accelerate: 1.1.1
325
+ - Datasets: 3.2.0
326
+ - Tokenizers: 0.21.0
327
+
328
+ ## Citation
329
+
330
+ ### BibTeX
331
+
332
+ #### Sentence Transformers
333
+ ```bibtex
334
+ @inproceedings{reimers-2019-sentence-bert,
335
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
336
+ author = "Reimers, Nils and Gurevych, Iryna",
337
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
338
+ month = "11",
339
+ year = "2019",
340
+ publisher = "Association for Computational Linguistics",
341
+ url = "https://arxiv.org/abs/1908.10084",
342
+ }
343
+ ```
344
+
345
+ <!--
346
+ ## Glossary
347
+
348
+ *Clearly define terms in order to be accessible across audiences.*
349
+ -->
350
+
351
+ <!--
352
+ ## Model Card Authors
353
+
354
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
355
+ -->
356
+
357
+ <!--
358
+ ## Model Card Contact
359
+
360
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
361
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/all-mpnet-base-v2-finetuned-v1/checkpoint-230/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2042ab87e969bc057cc87087e2af84c85925cb948bd953670b6ebdf9c9970479
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff