File size: 16,511 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Deep Layer Aggregation

Extending  “shallow” skip connections, **Dense Layer Aggregation (DLA)** incorporates more depth and sharing. The authors introduce two structures for deep layer aggregation (DLA): iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA). These structures are expressed through an architectural framework, independent of the choice of backbone, for compatibility with current and future networks. 

IDA focuses on fusing resolutions and scales while HDA focuses on merging features from all modules and channels. IDA follows the base hierarchy to refine resolution and aggregate scale stage-bystage. HDA assembles its own hierarchy of tree-structured connections that cross and merge stages to aggregate different levels of representation. 

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('dla102', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `dla102`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('dla102', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../scripts) for training a new model afresh.

## Citation

```BibTeX
@misc{yu2019deep,
      title={Deep Layer Aggregation}, 
      author={Fisher Yu and Dequan Wang and Evan Shelhamer and Trevor Darrell},
      year={2019},
      eprint={1707.06484},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: DLA
  Paper:
    Title: Deep Layer Aggregation
    URL: https://paperswithcode.com/paper/deep-layer-aggregation
Models:
- Name: dla102
  In Collection: DLA
  Metadata:
    FLOPs: 7192952808
    Parameters: 33270000
    File Size: 135290579
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x GPUs
    ID: dla102
    LR: 0.1
    Epochs: 120
    Layers: 102
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L410
  Weights: http://dl.yf.io/dla/models/imagenet/dla102-d94d9790.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.03%
      Top 5 Accuracy: 93.95%
- Name: dla102x
  In Collection: DLA
  Metadata:
    FLOPs: 5886821352
    Parameters: 26310000
    File Size: 107552695
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x GPUs
    ID: dla102x
    LR: 0.1
    Epochs: 120
    Layers: 102
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L418
  Weights: http://dl.yf.io/dla/models/imagenet/dla102x-ad62be81.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.51%
      Top 5 Accuracy: 94.23%
- Name: dla102x2
  In Collection: DLA
  Metadata:
    FLOPs: 9343847400
    Parameters: 41280000
    File Size: 167645295
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x GPUs
    ID: dla102x2
    LR: 0.1
    Epochs: 120
    Layers: 102
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L426
  Weights: http://dl.yf.io/dla/models/imagenet/dla102x2-262837b6.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.44%
      Top 5 Accuracy: 94.65%
- Name: dla169
  In Collection: DLA
  Metadata:
    FLOPs: 11598004200
    Parameters: 53390000
    File Size: 216547113
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x GPUs
    ID: dla169
    LR: 0.1
    Epochs: 120
    Layers: 169
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L434
  Weights: http://dl.yf.io/dla/models/imagenet/dla169-0914e092.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.69%
      Top 5 Accuracy: 94.33%
- Name: dla34
  In Collection: DLA
  Metadata:
    FLOPs: 3070105576
    Parameters: 15740000
    File Size: 63228658
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla34
    LR: 0.1
    Epochs: 120
    Layers: 32
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L362
  Weights: http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 74.62%
      Top 5 Accuracy: 92.06%
- Name: dla46_c
  In Collection: DLA
  Metadata:
    FLOPs: 583277288
    Parameters: 1300000
    File Size: 5307963
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla46_c
    LR: 0.1
    Epochs: 120
    Layers: 46
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L369
  Weights: http://dl.yf.io/dla/models/imagenet/dla46_c-2bfd52c3.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 64.87%
      Top 5 Accuracy: 86.29%
- Name: dla46x_c
  In Collection: DLA
  Metadata:
    FLOPs: 544052200
    Parameters: 1070000
    File Size: 4387641
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla46x_c
    LR: 0.1
    Epochs: 120
    Layers: 46
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L378
  Weights: http://dl.yf.io/dla/models/imagenet/dla46x_c-d761bae7.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 65.98%
      Top 5 Accuracy: 86.99%
- Name: dla60
  In Collection: DLA
  Metadata:
    FLOPs: 4256251880
    Parameters: 22040000
    File Size: 89560235
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla60
    LR: 0.1
    Epochs: 120
    Layers: 60
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L394
  Weights: http://dl.yf.io/dla/models/imagenet/dla60-24839fc4.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.04%
      Top 5 Accuracy: 93.32%
- Name: dla60_res2net
  In Collection: DLA
  Metadata:
    FLOPs: 4147578504
    Parameters: 20850000
    File Size: 84886593
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla60_res2net
    Layers: 60
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L346
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.46%
      Top 5 Accuracy: 94.21%
- Name: dla60_res2next
  In Collection: DLA
  Metadata:
    FLOPs: 3485335272
    Parameters: 17030000
    File Size: 69639245
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla60_res2next
    Layers: 60
    Crop Pct: '0.875'
    Image Size: '224'
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L354
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.44%
      Top 5 Accuracy: 94.16%
- Name: dla60x
  In Collection: DLA
  Metadata:
    FLOPs: 3544204264
    Parameters: 17350000
    File Size: 70883139
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla60x
    LR: 0.1
    Epochs: 120
    Layers: 60
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L402
  Weights: http://dl.yf.io/dla/models/imagenet/dla60x-d15cacda.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.25%
      Top 5 Accuracy: 94.02%
- Name: dla60x_c
  In Collection: DLA
  Metadata:
    FLOPs: 593325032
    Parameters: 1320000
    File Size: 5454396
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - DLA Bottleneck Residual Block
    - DLA Residual Block
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Block
    - Residual Connection
    - Softmax
    Tasks:
    - Image Classification
    Training Techniques:
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    ID: dla60x_c
    LR: 0.1
    Epochs: 120
    Layers: 60
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 256
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L386
  Weights: http://dl.yf.io/dla/models/imagenet/dla60x_c-b870c45c.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 67.91%
      Top 5 Accuracy: 88.42%
-->