File size: 16,635 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Noisy Student (EfficientNet)

**Noisy Student Training** is a semi-supervised learning approach. It extends the idea of self-training
and distillation with the use of equal-or-larger student models and noise added to the student during learning. It has three main steps: 

1. train a teacher model on labeled images
2. use the teacher to generate pseudo labels on unlabeled images
3. train a student model on the combination of labeled images and pseudo labeled images. 

The algorithm is iterated a few times by treating the student as a teacher to relabel the unlabeled data and training a new student.

Noisy Student Training seeks to improve on self-training and distillation in two ways. First, it makes the student larger than, or at least equal to, the teacher so the student can better learn from a larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder from the pseudo labels. To noise the student, it uses input noise such as RandAugment data augmentation, and model noise such as dropout and stochastic depth during training.

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ns`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../scripts) for training a new model afresh.

## Citation

```BibTeX
@misc{xie2020selftraining,
      title={Self-training with Noisy Student improves ImageNet classification}, 
      author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le},
      year={2020},
      eprint={1911.04252},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```

<!--
Type: model-index
Collections:
- Name: Noisy Student
  Paper:
    Title: Self-training with Noisy Student improves ImageNet classification
    URL: https://paperswithcode.com/paper/self-training-with-noisy-student-improves
Models:
- Name: tf_efficientnet_b0_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 488688572
    Parameters: 5290000
    File Size: 21386709
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b0_ns
    LR: 0.128
    Epochs: 700
    Dropout: 0.5
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1427
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.66%
      Top 5 Accuracy: 94.37%
- Name: tf_efficientnet_b1_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 883633200
    Parameters: 7790000
    File Size: 31516408
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b1_ns
    LR: 0.128
    Epochs: 700
    Dropout: 0.5
    Crop Pct: '0.882'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '240'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1437
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 81.39%
      Top 5 Accuracy: 95.74%
- Name: tf_efficientnet_b2_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 1234321170
    Parameters: 9110000
    File Size: 36801803
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b2_ns
    LR: 0.128
    Epochs: 700
    Dropout: 0.5
    Crop Pct: '0.89'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '260'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1447
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 82.39%
      Top 5 Accuracy: 96.24%
- Name: tf_efficientnet_b3_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 2275247568
    Parameters: 12230000
    File Size: 49385734
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b3_ns
    LR: 0.128
    Epochs: 700
    Dropout: 0.5
    Crop Pct: '0.904'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '300'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1457
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 84.04%
      Top 5 Accuracy: 96.91%
- Name: tf_efficientnet_b4_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 5749638672
    Parameters: 19340000
    File Size: 77995057
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b4_ns
    LR: 0.128
    Epochs: 700
    Dropout: 0.5
    Crop Pct: '0.922'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '380'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1467
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 85.15%
      Top 5 Accuracy: 97.47%
- Name: tf_efficientnet_b5_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 13176501888
    Parameters: 30390000
    File Size: 122404944
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b5_ns
    LR: 0.128
    Epochs: 350
    Dropout: 0.5
    Crop Pct: '0.934'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '456'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1477
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 86.08%
      Top 5 Accuracy: 97.75%
- Name: tf_efficientnet_b6_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 24180518488
    Parameters: 43040000
    File Size: 173239537
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b6_ns
    LR: 0.128
    Epochs: 350
    Dropout: 0.5
    Crop Pct: '0.942'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '528'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1487
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 86.45%
      Top 5 Accuracy: 97.88%
- Name: tf_efficientnet_b7_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 48205304880
    Parameters: 66349999
    File Size: 266853140
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    ID: tf_efficientnet_b7_ns
    LR: 0.128
    Epochs: 350
    Dropout: 0.5
    Crop Pct: '0.949'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '600'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1498
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 86.83%
      Top 5 Accuracy: 98.08%
- Name: tf_efficientnet_l2_ns
  In Collection: Noisy Student
  Metadata:
    FLOPs: 611646113804
    Parameters: 480310000
    File Size: 1925950424
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - FixRes
    - Label Smoothing
    - Noisy Student
    - RMSProp
    - RandAugment
    - Weight Decay
    Training Data:
    - ImageNet
    - JFT-300M
    Training Resources: Cloud TPU v3 Pod
    Training Time: 6 days
    ID: tf_efficientnet_l2_ns
    LR: 0.128
    Epochs: 350
    Dropout: 0.5
    Crop Pct: '0.96'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '800'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
    Stochastic Depth Survival: 0.8
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1520
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 88.35%
      Top 5 Accuracy: 98.66%
-->