File size: 13,552 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# ResNeSt

A **ResNeSt** is a variant on a [ResNet](https://paperswithcode.com/method/resnet), which instead stacks [Split-Attention blocks](https://paperswithcode.com/method/split-attention). The cardinal group representations are then concatenated along the channel dimension: \\( V = \text{Concat} \\){\\( V^{1},V^{2},\cdots{V}^{K} \\)}. As in standard residual blocks, the final output \\( Y \\) of otheur Split-Attention block is produced using a shortcut connection: \\( Y=V+X \\), if the input and output feature-map share the same shape.  For blocks with a stride, an appropriate transformation \\( \mathcal{T} \\) is applied to the shortcut connection to align the output shapes:  \\( Y=V+\mathcal{T}(X) \\). For example, \\( \mathcal{T} \\) can be strided convolution or combined convolution-with-pooling.

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('resnest101e', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `resnest101e`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('resnest101e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../scripts) for training a new model afresh.

## Citation

```BibTeX
@misc{zhang2020resnest,
      title={ResNeSt: Split-Attention Networks},
      author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola},
      year={2020},
      eprint={2004.08955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: ResNeSt
  Paper:
    Title: 'ResNeSt: Split-Attention Networks'
    URL: https://paperswithcode.com/paper/resnest-split-attention-networks
Models:
- Name: resnest101e
  In Collection: ResNeSt
  Metadata:
    FLOPs: 17423183648
    Parameters: 48280000
    File Size: 193782911
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest101e
    LR: 0.1
    Epochs: 270
    Layers: 101
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '256'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L182
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 82.88%
      Top 5 Accuracy: 96.31%
- Name: resnest14d
  In Collection: ResNeSt
  Metadata:
    FLOPs: 3548594464
    Parameters: 10610000
    File Size: 42562639
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest14d
    LR: 0.1
    Epochs: 270
    Layers: 14
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8192
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L148
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.51%
      Top 5 Accuracy: 92.52%
- Name: resnest200e
  In Collection: ResNeSt
  Metadata:
    FLOPs: 45954387872
    Parameters: 70200000
    File Size: 193782911
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest200e
    LR: 0.1
    Epochs: 270
    Layers: 200
    Dropout: 0.2
    Crop Pct: '0.909'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '320'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L194
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 83.85%
      Top 5 Accuracy: 96.89%
- Name: resnest269e
  In Collection: ResNeSt
  Metadata:
    FLOPs: 100830307104
    Parameters: 110930000
    File Size: 445402691
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest269e
    LR: 0.1
    Epochs: 270
    Layers: 269
    Dropout: 0.2
    Crop Pct: '0.928'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '416'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L206
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 84.53%
      Top 5 Accuracy: 96.99%
- Name: resnest26d
  In Collection: ResNeSt
  Metadata:
    FLOPs: 4678918720
    Parameters: 17070000
    File Size: 68470242
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest26d
    LR: 0.1
    Epochs: 270
    Layers: 26
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8192
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L159
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 78.48%
      Top 5 Accuracy: 94.3%
- Name: resnest50d
  In Collection: ResNeSt
  Metadata:
    FLOPs: 6937106336
    Parameters: 27480000
    File Size: 110273258
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest50d
    LR: 0.1
    Epochs: 270
    Layers: 50
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8192
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L170
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 80.96%
      Top 5 Accuracy: 95.38%
- Name: resnest50d_1s4x24d
  In Collection: ResNeSt
  Metadata:
    FLOPs: 5686764544
    Parameters: 25680000
    File Size: 103045531
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest50d_1s4x24d
    LR: 0.1
    Epochs: 270
    Layers: 50
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8192
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L229
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 81.0%
      Top 5 Accuracy: 95.33%
- Name: resnest50d_4s2x40d
  In Collection: ResNeSt
  Metadata:
    FLOPs: 5657064720
    Parameters: 30420000
    File Size: 122133282
    Architecture:
    - 1x1 Convolution
    - Convolution
    - Dense Connections
    - Global Average Pooling
    - Max Pooling
    - ReLU
    - Residual Connection
    - Softmax
    - Split Attention
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - DropBlock
    - Label Smoothing
    - Mixup
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 64x NVIDIA V100 GPUs
    ID: resnest50d_4s2x40d
    LR: 0.1
    Epochs: 270
    Layers: 50
    Dropout: 0.2
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 8192
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L218
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 81.11%
      Top 5 Accuracy: 95.55%
-->