File size: 26,114 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
"""Run tests for all models

Tests that run on CI should have a specific marker, e.g. @pytest.mark.base. This
marker is used to parallelize the CI runs, with one runner for each marker.

If new tests are added, ensure that they use one of the existing markers
(documented in pyproject.toml > pytest > markers) or that a new marker is added
for this set of tests. If using a new marker, adjust the test matrix in
.github/workflows/tests.yml to run tests with this new marker, otherwise the
tests will be skipped on CI.

"""

import pytest
import torch
import platform
import os
import fnmatch

_IS_MAC = platform.system() == 'Darwin'

try:
    from torchvision.models.feature_extraction import create_feature_extractor, get_graph_node_names, NodePathTracer
    has_fx_feature_extraction = True
except ImportError:
    has_fx_feature_extraction = False

import timm
from timm import list_models, create_model, set_scriptable, get_pretrained_cfg_value
from timm.layers import Format, get_spatial_dim, get_channel_dim
from timm.models import get_notrace_modules, get_notrace_functions

import importlib
import os

torch_backend = os.environ.get('TORCH_BACKEND')
if torch_backend is not None:
    importlib.import_module(torch_backend)
torch_device = os.environ.get('TORCH_DEVICE', 'cpu')
timeout = os.environ.get('TIMEOUT')
timeout120 = int(timeout) if timeout else 120
timeout300 = int(timeout) if timeout else 300

if hasattr(torch._C, '_jit_set_profiling_executor'):
    # legacy executor is too slow to compile large models for unit tests
    # no need for the fusion performance here
    torch._C._jit_set_profiling_executor(True)
    torch._C._jit_set_profiling_mode(False)

# models with forward_intermediates() and support for FeatureGetterNet features_only wrapper
FEAT_INTER_FILTERS = [
    'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*',
    'cait_*', 'xcit_*', 'volo_*',
]

# transformer / hybrid models don't support full set of spatial / feature APIs and/or have spatial output.
NON_STD_FILTERS = [
    'vit_*', 'tnt_*', 'pit_*', 'coat_*', 'cait_*', '*mixer_*', 'gmlp_*', 'resmlp_*', 'twins_*',
    'convit_*', 'levit*', 'visformer*', 'deit*', 'xcit_*', 'crossvit_*', 'beit*',
    'poolformer_*', 'volo_*', 'sequencer2d_*', 'mvitv2*', 'gcvit*', 'efficientformer*',
    'eva_*', 'flexivit*', 'eva02*', 'samvit_*', 'efficientvit_m*', 'tiny_vit_*'
]
NUM_NON_STD = len(NON_STD_FILTERS)

# exclude models that cause specific test failures
if 'GITHUB_ACTIONS' in os.environ:
    # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
    EXCLUDE_FILTERS = [
        '*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm', '*50x3_bitm',
        '*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*', '*efficientnetv2_xl*',
        '*resnetrs350*', '*resnetrs420*', 'xcit_large_24_p8*', '*huge*', '*giant*', '*gigantic*',
        '*enormous*', 'maxvit_xlarge*', 'regnet*1280', 'regnet*2560']
    NON_STD_EXCLUDE_FILTERS = ['*huge*', '*giant*',  '*gigantic*', '*enormous*']
else:
    EXCLUDE_FILTERS = ['*enormous*']
    NON_STD_EXCLUDE_FILTERS = ['*gigantic*', '*enormous*']

EXCLUDE_JIT_FILTERS = []

TARGET_FWD_SIZE = MAX_FWD_SIZE = 384
TARGET_BWD_SIZE = 128
MAX_BWD_SIZE = 320
MAX_FWD_OUT_SIZE = 448
TARGET_JIT_SIZE = 128
MAX_JIT_SIZE = 320
TARGET_FFEAT_SIZE = 96
MAX_FFEAT_SIZE = 256
TARGET_FWD_FX_SIZE = 128
MAX_FWD_FX_SIZE = 256
TARGET_BWD_FX_SIZE = 128
MAX_BWD_FX_SIZE = 224


def _get_input_size(model=None, model_name='', target=None):
    if model is None:
        assert model_name, "One of model or model_name must be provided"
        input_size = get_pretrained_cfg_value(model_name, 'input_size')
        fixed_input_size = get_pretrained_cfg_value(model_name, 'fixed_input_size')
        min_input_size = get_pretrained_cfg_value(model_name, 'min_input_size')
    else:
        default_cfg = model.default_cfg
        input_size = default_cfg['input_size']
        fixed_input_size = default_cfg.get('fixed_input_size', None)
        min_input_size = default_cfg.get('min_input_size', None)
    assert input_size is not None

    if fixed_input_size:
        return input_size

    if min_input_size:
        if target and max(input_size) > target:
            input_size = min_input_size
    else:
        if target and max(input_size) > target:
            input_size = tuple([min(x, target) for x in input_size])
    return input_size


@pytest.mark.base
@pytest.mark.timeout(timeout120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()

    input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE)
    if max(input_size) > MAX_FWD_SIZE:
        pytest.skip("Fixed input size model > limit.")
    inputs = torch.randn((batch_size, *input_size))
    inputs = inputs.to(torch_device)
    model.to(torch_device)
    outputs = model(inputs)

    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'


@pytest.mark.base
@pytest.mark.timeout(timeout120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward(model_name, batch_size):
    """Run a single forward pass with each model"""
    input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_SIZE)
    if max(input_size) > MAX_BWD_SIZE:
        pytest.skip("Fixed input size model > limit.")

    model = create_model(model_name, pretrained=False, num_classes=42)
    num_params = sum([x.numel() for x in model.parameters()])
    model.train()

    inputs = torch.randn((batch_size, *input_size))
    inputs = inputs.to(torch_device)
    model.to(torch_device)
    outputs = model(inputs)
    if isinstance(outputs, tuple):
        outputs = torch.cat(outputs)
    outputs.mean().backward()
    for n, x in model.named_parameters():
        assert x.grad is not None, f'No gradient for {n}'
    num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])

    assert outputs.shape[-1] == 42
    assert num_params == num_grad, 'Some parameters are missing gradients'
    assert not torch.isnan(outputs).any(), 'Output included NaNs'


@pytest.mark.cfg
@pytest.mark.timeout(timeout300)
@pytest.mark.parametrize('model_name', list_models(
    exclude_filters=EXCLUDE_FILTERS + NON_STD_FILTERS, include_tags=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_default_cfgs(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()
    model.to(torch_device)
    state_dict = model.state_dict()
    cfg = model.default_cfg

    pool_size = cfg['pool_size']
    input_size = model.default_cfg['input_size']
    output_fmt = getattr(model, 'output_fmt', 'NCHW')
    spatial_axis = get_spatial_dim(output_fmt)
    assert len(spatial_axis) == 2  # TODO add 1D sequence support
    feat_axis = get_channel_dim(output_fmt)

    if all([x <= MAX_FWD_OUT_SIZE for x in input_size]) and \
            not any([fnmatch.fnmatch(model_name, x) for x in EXCLUDE_FILTERS]):
        # output sizes only checked if default res <= 448 * 448 to keep resource down
        input_size = tuple([min(x, MAX_FWD_OUT_SIZE) for x in input_size])
        input_tensor = torch.randn((batch_size, *input_size), device=torch_device)

        # test forward_features (always unpooled)
        outputs = model.forward_features(input_tensor)
        assert outputs.shape[spatial_axis[0]] == pool_size[0], 'unpooled feature shape != config'
        assert outputs.shape[spatial_axis[1]] == pool_size[1], 'unpooled feature shape != config'
        if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)):
            assert outputs.shape[feat_axis] == model.num_features

        # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
        model.reset_classifier(0)
        model.to(torch_device)
        outputs = model.forward(input_tensor)
        assert len(outputs.shape) == 2
        assert outputs.shape[1] == model.num_features

        # test model forward without pooling and classifier
        model.reset_classifier(0, '')  # reset classifier and set global pooling to pass-through
        model.to(torch_device)
        outputs = model.forward(input_tensor)
        assert len(outputs.shape) == 4
        if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)):
            # mobilenetv3/ghostnet/repghostnet/vgg forward_features vs removed pooling differ due to location or lack of GAP
            assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1]

        if 'pruned' not in model_name:  # FIXME better pruned model handling
            # test classifier + global pool deletion via __init__
            model = create_model(model_name, pretrained=False, num_classes=0, global_pool='').eval()
            model.to(torch_device)
            outputs = model.forward(input_tensor)
            assert len(outputs.shape) == 4
            if not isinstance(model, (timm.models.MobileNetV3, timm.models.GhostNet, timm.models.RepGhostNet, timm.models.VGG)):
                assert outputs.shape[spatial_axis[0]] == pool_size[0] and outputs.shape[spatial_axis[1]] == pool_size[1]

    # check classifier name matches default_cfg
    if cfg.get('num_classes', None):
        classifier = cfg['classifier']
        if not isinstance(classifier, (tuple, list)):
            classifier = classifier,
        for c in classifier:
            assert c + ".weight" in state_dict.keys(), f'{c} not in model params'

    # check first conv(s) names match default_cfg
    first_conv = cfg['first_conv']
    if isinstance(first_conv, str):
        first_conv = (first_conv,)
    assert isinstance(first_conv, (tuple, list))
    for fc in first_conv:
        assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'


@pytest.mark.cfg
@pytest.mark.timeout(timeout300)
@pytest.mark.parametrize('model_name', list_models(filter=NON_STD_FILTERS, exclude_filters=NON_STD_EXCLUDE_FILTERS, include_tags=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_default_cfgs_non_std(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()
    model.to(torch_device)
    state_dict = model.state_dict()
    cfg = model.default_cfg

    input_size = _get_input_size(model=model)
    if max(input_size) > 320:  # FIXME const
        pytest.skip("Fixed input size model > limit.")

    input_tensor = torch.randn((batch_size, *input_size), device=torch_device)
    feat_dim = getattr(model, 'feature_dim', None)

    outputs = model.forward_features(input_tensor)
    if isinstance(outputs, (tuple, list)):
        # cannot currently verify multi-tensor output.
        pass
    else:
        if feat_dim is None:
            feat_dim = -1 if outputs.ndim == 3 else 1
        assert outputs.shape[feat_dim] == model.num_features

    # test forward after deleting the classifier, output should be poooled, size(-1) == model.num_features
    model.reset_classifier(0)
    model.to(torch_device)
    outputs = model.forward(input_tensor)
    if isinstance(outputs,  (tuple, list)):
        outputs = outputs[0]
    if feat_dim is None:
        feat_dim = -1 if outputs.ndim == 3 else 1
    assert outputs.shape[feat_dim] == model.num_features, 'pooled num_features != config'

    model = create_model(model_name, pretrained=False, num_classes=0).eval()
    model.to(torch_device)
    outputs = model.forward(input_tensor)
    if isinstance(outputs, (tuple, list)):
        outputs = outputs[0]
    if feat_dim is None:
        feat_dim = -1 if outputs.ndim == 3 else 1
    assert outputs.shape[feat_dim] == model.num_features

    # check classifier name matches default_cfg
    if cfg.get('num_classes', None):
        classifier = cfg['classifier']
        if not isinstance(classifier, (tuple, list)):
            classifier = classifier,
        for c in classifier:
            assert c + ".weight" in state_dict.keys(), f'{c} not in model params'

    # check first conv(s) names match default_cfg
    first_conv = cfg['first_conv']
    if isinstance(first_conv, str):
        first_conv = (first_conv,)
    assert isinstance(first_conv, (tuple, list))
    for fc in first_conv:
        assert fc + ".weight" in state_dict.keys(), f'{fc} not in model params'


if 'GITHUB_ACTIONS' not in os.environ:
    @pytest.mark.timeout(240)
    @pytest.mark.parametrize('model_name', list_models(pretrained=True))
    @pytest.mark.parametrize('batch_size', [1])
    def test_model_load_pretrained(model_name, batch_size):
        """Create that pretrained weights load, verify support for in_chans != 3 while doing so."""
        in_chans = 3 if 'pruned' in model_name else 1  # pruning not currently supported with in_chans change
        create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=5)
        create_model(model_name, pretrained=True, in_chans=in_chans, num_classes=0)

    @pytest.mark.timeout(240)
    @pytest.mark.parametrize('model_name', list_models(pretrained=True, exclude_filters=NON_STD_FILTERS))
    @pytest.mark.parametrize('batch_size', [1])
    def test_model_features_pretrained(model_name, batch_size):
        """Create that pretrained weights load when features_only==True."""
        create_model(model_name, pretrained=True, features_only=True)


@pytest.mark.torchscript
@pytest.mark.timeout(timeout120)
@pytest.mark.parametrize(
    'model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_torchscript(model_name, batch_size):
    """Run a single forward pass with each model"""
    input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
    if max(input_size) > MAX_JIT_SIZE:
        pytest.skip("Fixed input size model > limit.")

    with set_scriptable(True):
        model = create_model(model_name, pretrained=False)
    model.eval()

    model = torch.jit.script(model)
    model.to(torch_device)
    outputs = model(torch.randn((batch_size, *input_size)))

    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'


EXCLUDE_FEAT_FILTERS = [
    '*pruned*',  # hopefully fix at some point
] + NON_STD_FILTERS
if 'GITHUB_ACTIONS' in os.environ:  # and 'Linux' in platform.system():
    # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
    EXCLUDE_FEAT_FILTERS += ['*resnext101_32x32d', '*resnext101_32x16d']


@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FEAT_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_features(model_name, batch_size):
    """Run a single forward pass with each model in feature extraction mode"""
    model = create_model(model_name, pretrained=False, features_only=True)
    model.eval()
    expected_channels = model.feature_info.channels()
    expected_reduction = model.feature_info.reduction()
    assert len(expected_channels) >= 3  # all models here should have at least 3 default feat levels

    input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
    if max(input_size) > MAX_FFEAT_SIZE:
        pytest.skip("Fixed input size model > limit.")
    output_fmt = getattr(model, 'output_fmt', 'NCHW')
    feat_axis = get_channel_dim(output_fmt)
    spatial_axis = get_spatial_dim(output_fmt)
    import math

    outputs = model(torch.randn((batch_size, *input_size)))
    assert len(expected_channels) == len(outputs)
    spatial_size = input_size[-2:]
    for e, r, o in zip(expected_channels, expected_reduction, outputs):
        assert e == o.shape[feat_axis]
        assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
        assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
        assert o.shape[0] == batch_size
        assert not torch.isnan(o).any()


@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_intermediates_features(model_name, batch_size):
    """Run a single forward pass with each model in feature extraction mode"""
    model = create_model(model_name, pretrained=False, features_only=True)
    model.eval()
    print(model.feature_info.out_indices)
    expected_channels = model.feature_info.channels()
    expected_reduction = model.feature_info.reduction()

    input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
    if max(input_size) > MAX_FFEAT_SIZE:
        pytest.skip("Fixed input size model > limit.")
    output_fmt = getattr(model, 'output_fmt', 'NCHW')
    feat_axis = get_channel_dim(output_fmt)
    spatial_axis = get_spatial_dim(output_fmt)
    import math

    outputs = model(torch.randn((batch_size, *input_size)))
    assert len(expected_channels) == len(outputs)
    spatial_size = input_size[-2:]
    for e, r, o in zip(expected_channels, expected_reduction, outputs):
        print(o.shape)
        assert e == o.shape[feat_axis]
        assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
        assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
        assert o.shape[0] == batch_size
        assert not torch.isnan(o).any()


@pytest.mark.features
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(FEAT_INTER_FILTERS, exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_intermediates(model_name, batch_size):
    """Run a single forward pass with each model in feature extraction mode"""
    model = create_model(model_name, pretrained=False)
    model.eval()
    feature_info = timm.models.FeatureInfo(model.feature_info, len(model.feature_info))
    expected_channels = feature_info.channels()
    expected_reduction = feature_info.reduction()
    assert len(expected_channels) >= 4  # all models here should have at least 4 feature levels by default, some 5 or 6

    input_size = _get_input_size(model=model, target=TARGET_FFEAT_SIZE)
    if max(input_size) > MAX_FFEAT_SIZE:
        pytest.skip("Fixed input size model > limit.")
    output_fmt = getattr(model, 'output_fmt', 'NCHW')
    feat_axis = get_channel_dim(output_fmt)
    spatial_axis = get_spatial_dim(output_fmt)
    import math

    output, intermediates = model.forward_intermediates(
        torch.randn((batch_size, *input_size)),
    )
    assert len(expected_channels) == len(intermediates)
    spatial_size = input_size[-2:]
    for e, r, o in zip(expected_channels, expected_reduction, intermediates):
        assert e == o.shape[feat_axis]
        assert o.shape[spatial_axis[0]] <= math.ceil(spatial_size[0] / r) + 1
        assert o.shape[spatial_axis[1]] <= math.ceil(spatial_size[1] / r) + 1
        assert o.shape[0] == batch_size
        assert not torch.isnan(o).any()


def _create_fx_model(model, train=False):
    # This block of code does a bit of juggling to handle any case where there are multiple outputs in train mode
    # So we trace once and look at the graph, and get the indices of the nodes that lead into the original fx output
    # node. Then we use those indices to select from train_nodes returned by torchvision get_graph_node_names
    tracer_kwargs = dict(
        leaf_modules=get_notrace_modules(),
        autowrap_functions=get_notrace_functions(),
        #enable_cpatching=True,
        param_shapes_constant=True
    )
    train_nodes, eval_nodes = get_graph_node_names(model, tracer_kwargs=tracer_kwargs)

    eval_return_nodes = [eval_nodes[-1]]
    train_return_nodes = [train_nodes[-1]]
    if train:
        tracer = NodePathTracer(**tracer_kwargs)
        graph = tracer.trace(model)
        graph_nodes = list(reversed(graph.nodes))
        output_node_names = [n.name for n in graph_nodes[0]._input_nodes.keys()]
        graph_node_names = [n.name for n in graph_nodes]
        output_node_indices = [-graph_node_names.index(node_name) for node_name in output_node_names]
        train_return_nodes = [train_nodes[ix] for ix in output_node_indices]

    fx_model = create_feature_extractor(
        model,
        train_return_nodes=train_return_nodes,
        eval_return_nodes=eval_return_nodes,
        tracer_kwargs=tracer_kwargs,
    )
    return fx_model


EXCLUDE_FX_FILTERS = ['vit_gi*']
# not enough memory to run fx on more models than other tests
if 'GITHUB_ACTIONS' in os.environ:
    EXCLUDE_FX_FILTERS += [
        'beit_large*',
        'mixer_l*',
        '*nfnet_f2*',
        '*resnext101_32x32d',
        'resnetv2_152x2*',
        'resmlp_big*',
        'resnetrs270',
        'swin_large*',
        'vgg*',
        'vit_large*',
        'vit_base_patch8*',
        'xcit_large*',
    ]


@pytest.mark.fxforward
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward_fx(model_name, batch_size):
    """
    Symbolically trace each model and run single forward pass through the resulting GraphModule
    Also check that the output of a forward pass through the GraphModule is the same as that from the original Module
    """
    if not has_fx_feature_extraction:
        pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")

    model = create_model(model_name, pretrained=False)
    model.eval()

    input_size = _get_input_size(model=model, target=TARGET_FWD_FX_SIZE)
    if max(input_size) > MAX_FWD_FX_SIZE:
        pytest.skip("Fixed input size model > limit.")
    with torch.no_grad():
        inputs = torch.randn((batch_size, *input_size))
        outputs = model(inputs)
        if isinstance(outputs, tuple):
            outputs = torch.cat(outputs)

        model = _create_fx_model(model)
        fx_outputs = tuple(model(inputs).values())
        if isinstance(fx_outputs, tuple):
            fx_outputs = torch.cat(fx_outputs)

    assert torch.all(fx_outputs == outputs)
    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'


@pytest.mark.fxbackward
@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(
    exclude_filters=EXCLUDE_FILTERS + EXCLUDE_FX_FILTERS, name_matches_cfg=True))
@pytest.mark.parametrize('batch_size', [2])
def test_model_backward_fx(model_name, batch_size):
    """Symbolically trace each model and run single backward pass through the resulting GraphModule"""
    if not has_fx_feature_extraction:
        pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")

    input_size = _get_input_size(model_name=model_name, target=TARGET_BWD_FX_SIZE)
    if max(input_size) > MAX_BWD_FX_SIZE:
        pytest.skip("Fixed input size model > limit.")

    model = create_model(model_name, pretrained=False, num_classes=42)
    model.train()
    num_params = sum([x.numel() for x in model.parameters()])
    if 'GITHUB_ACTIONS' in os.environ and num_params > 100e6:
        pytest.skip("Skipping FX backward test on model with more than 100M params.")

    model = _create_fx_model(model, train=True)
    outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
    if isinstance(outputs, tuple):
        outputs = torch.cat(outputs)
    outputs.mean().backward()
    for n, x in model.named_parameters():
        assert x.grad is not None, f'No gradient for {n}'
    num_grad = sum([x.grad.numel() for x in model.parameters() if x.grad is not None])

    assert outputs.shape[-1] == 42
    assert num_params == num_grad, 'Some parameters are missing gradients'
    assert not torch.isnan(outputs).any(), 'Output included NaNs'


if 'GITHUB_ACTIONS' not in os.environ:
    # FIXME this test is causing GitHub actions to run out of RAM and abruptly kill the test process

    # reason: model is scripted after fx tracing, but beit has torch.jit.is_scripting() control flow
    EXCLUDE_FX_JIT_FILTERS = [
        'deit_*_distilled_patch16_224',
        'levit*',
        'pit_*_distilled_224',
    ] + EXCLUDE_FX_FILTERS


    @pytest.mark.timeout(120)
    @pytest.mark.parametrize(
        'model_name', list_models(
            exclude_filters=EXCLUDE_FILTERS + EXCLUDE_JIT_FILTERS + EXCLUDE_FX_JIT_FILTERS, name_matches_cfg=True))
    @pytest.mark.parametrize('batch_size', [1])
    def test_model_forward_fx_torchscript(model_name, batch_size):
        """Symbolically trace each model, script it, and run single forward pass"""
        if not has_fx_feature_extraction:
            pytest.skip("Can't test FX. Torch >= 1.10 and Torchvision >= 0.11 are required.")

        input_size = _get_input_size(model_name=model_name, target=TARGET_JIT_SIZE)
        if max(input_size) > MAX_JIT_SIZE:
            pytest.skip("Fixed input size model > limit.")

        with set_scriptable(True):
            model = create_model(model_name, pretrained=False)
        model.eval()

        model = torch.jit.script(_create_fx_model(model))
        with torch.no_grad():
            outputs = tuple(model(torch.randn((batch_size, *input_size))).values())
            if isinstance(outputs, tuple):
                outputs = torch.cat(outputs)

        assert outputs.shape[0] == batch_size
        assert not torch.isnan(outputs).any(), 'Output included NaNs'