File size: 3,240 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn as nn


class AsymmetricLossMultiLabel(nn.Module):
    def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False):
        super(AsymmetricLossMultiLabel, self).__init__()

        self.gamma_neg = gamma_neg
        self.gamma_pos = gamma_pos
        self.clip = clip
        self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
        self.eps = eps

    def forward(self, x, y):
        """"
        Parameters
        ----------
        x: input logits
        y: targets (multi-label binarized vector)
        """

        # Calculating Probabilities
        x_sigmoid = torch.sigmoid(x)
        xs_pos = x_sigmoid
        xs_neg = 1 - x_sigmoid

        # Asymmetric Clipping
        if self.clip is not None and self.clip > 0:
            xs_neg = (xs_neg + self.clip).clamp(max=1)

        # Basic CE calculation
        los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
        los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
        loss = los_pos + los_neg

        # Asymmetric Focusing
        if self.gamma_neg > 0 or self.gamma_pos > 0:
            if self.disable_torch_grad_focal_loss:
                torch.set_grad_enabled(False)
            pt0 = xs_pos * y
            pt1 = xs_neg * (1 - y)  # pt = p if t > 0 else 1-p
            pt = pt0 + pt1
            one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
            one_sided_w = torch.pow(1 - pt, one_sided_gamma)
            if self.disable_torch_grad_focal_loss:
                torch.set_grad_enabled(True)
            loss *= one_sided_w

        return -loss.sum()


class AsymmetricLossSingleLabel(nn.Module):
    def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'):
        super(AsymmetricLossSingleLabel, self).__init__()

        self.eps = eps
        self.logsoftmax = nn.LogSoftmax(dim=-1)
        self.targets_classes = []  # prevent gpu repeated memory allocation
        self.gamma_pos = gamma_pos
        self.gamma_neg = gamma_neg
        self.reduction = reduction

    def forward(self, inputs, target, reduction=None):
        """"
        Parameters
        ----------
        x: input logits
        y: targets (1-hot vector)
        """

        num_classes = inputs.size()[-1]
        log_preds = self.logsoftmax(inputs)
        self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1)

        # ASL weights
        targets = self.targets_classes
        anti_targets = 1 - targets
        xs_pos = torch.exp(log_preds)
        xs_neg = 1 - xs_pos
        xs_pos = xs_pos * targets
        xs_neg = xs_neg * anti_targets
        asymmetric_w = torch.pow(1 - xs_pos - xs_neg,
                                 self.gamma_pos * targets + self.gamma_neg * anti_targets)
        log_preds = log_preds * asymmetric_w

        if self.eps > 0:  # label smoothing
            self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes)

        # loss calculation
        loss = - self.targets_classes.mul(log_preds)

        loss = loss.sum(dim=-1)
        if self.reduction == 'mean':
            loss = loss.mean()

        return loss