File size: 29,273 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
""" BEiT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)

Model from official source: https://github.com/microsoft/unilm/tree/master/beit

@inproceedings{beit,
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
author={Hangbo Bao and Li Dong and Songhao Piao and Furu Wei},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=p-BhZSz59o4}
}

BEiT-v2 from https://github.com/microsoft/unilm/tree/master/beit2

@article{beitv2,
title={{BEiT v2}: Masked Image Modeling with Vector-Quantized Visual Tokenizers},
author={Zhiliang Peng and Li Dong and Hangbo Bao and Qixiang Ye and Furu Wei},
year={2022},
eprint={2208.06366},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

At this point only the 1k fine-tuned classification weights and model configs have been added,
see original source above for pre-training models and procedure.

Modifications by / Copyright 2021 Ross Wightman, original copyrights below
"""
# --------------------------------------------------------
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
# Github source: https://github.com/microsoft/unilm/tree/master/beit
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Hangbo Bao
# Based on timm and DeiT code bases
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'

import math
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, SwiGLU, LayerNorm, DropPath, trunc_normal_, use_fused_attn
from timm.layers import resample_patch_embed, resample_abs_pos_embed, resize_rel_pos_bias_table, ndgrid


from ._builder import build_model_with_cfg
from ._features import feature_take_indices
from ._registry import generate_default_cfgs, register_model

__all__ = ['Beit']


def gen_relative_position_index(window_size: Tuple[int, int]) -> torch.Tensor:
    num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
    # cls to token & token 2 cls & cls to cls
    # get pair-wise relative position index for each token inside the window
    window_area = window_size[0] * window_size[1]
    coords = torch.stack(ndgrid(torch.arange(window_size[0]), torch.arange(window_size[1])))  # 2, Wh, Ww
    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
    relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
    relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
    relative_coords[:, :, 1] += window_size[1] - 1
    relative_coords[:, :, 0] *= 2 * window_size[1] - 1
    relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype)
    relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
    relative_position_index[0, 0:] = num_relative_distance - 3
    relative_position_index[0:, 0] = num_relative_distance - 2
    relative_position_index[0, 0] = num_relative_distance - 1
    return relative_position_index


class Attention(nn.Module):
    fused_attn: torch.jit.Final[bool]

    def __init__(
            self,
            dim: int,
            num_heads: int = 8,
            qkv_bias: bool = False,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
            window_size: Optional[Tuple[int, int]] = None,
            attn_head_dim: Optional[int] = None,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = head_dim ** -0.5
        self.fused_attn = use_fused_attn()

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.register_buffer('k_bias', torch.zeros(all_head_dim), persistent=False)
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None

        if window_size:
            self.window_size = window_size
            self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros(self.num_relative_distance, num_heads))  # 2*Wh-1 * 2*Ww-1, nH
            self.register_buffer("relative_position_index", gen_relative_position_index(window_size), persistent=False)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def _get_rel_pos_bias(self):
        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1] + 1,
            self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        return relative_position_bias.unsqueeze(0)

    def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
        B, N, C = x.shape

        qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) if self.q_bias is not None else None
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # B, num_heads, N, head_dim

        if self.fused_attn:
            rel_pos_bias = None
            if self.relative_position_bias_table is not None:
                rel_pos_bias = self._get_rel_pos_bias()
                if shared_rel_pos_bias is not None:
                    rel_pos_bias = rel_pos_bias + shared_rel_pos_bias
            elif shared_rel_pos_bias is not None:
                rel_pos_bias = shared_rel_pos_bias

            x = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=rel_pos_bias,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = (q @ k.transpose(-2, -1))

            if self.relative_position_bias_table is not None:
                attn = attn + self._get_rel_pos_bias()
            if shared_rel_pos_bias is not None:
                attn = attn + shared_rel_pos_bias

            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):

    def __init__(
            self,
            dim: int,
            num_heads: int,
            qkv_bias: bool = False,
            mlp_ratio: float = 4.,
            scale_mlp: bool = False,
            swiglu_mlp: bool = False,
            proj_drop: float = 0.,
            attn_drop: float = 0.,
            drop_path: float = 0.,
            init_values: Optional[float] = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            window_size: Optional[Tuple[int, int]] = None,
            attn_head_dim: Optional[int] = None,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            window_size=window_size,
            attn_head_dim=attn_head_dim,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        if swiglu_mlp:
            self.mlp = SwiGLU(
                in_features=dim,
                hidden_features=int(dim * mlp_ratio),
                norm_layer=norm_layer if scale_mlp else None,
                drop=proj_drop,
            )
        else:
            self.mlp = Mlp(
                in_features=dim,
                hidden_features=int(dim * mlp_ratio),
                act_layer=act_layer,
                norm_layer=norm_layer if scale_mlp else None,
                drop=proj_drop,
            )
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        if init_values:
            self.gamma_1 = nn.Parameter(init_values * torch.ones(dim))
            self.gamma_2 = nn.Parameter(init_values * torch.ones(dim))
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x, shared_rel_pos_bias: Optional[torch.Tensor] = None):
        if self.gamma_1 is None:
            x = x + self.drop_path1(self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
            x = x + self.drop_path2(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path1(self.gamma_1 * self.attn(self.norm1(x), shared_rel_pos_bias=shared_rel_pos_bias))
            x = x + self.drop_path2(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class RelativePositionBias(nn.Module):

    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.window_area = window_size[0] * window_size[1]
        num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads))
        # trunc_normal_(self.relative_position_bias_table, std=.02)
        self.register_buffer("relative_position_index", gen_relative_position_index(window_size))

    def forward(self):
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_area + 1, self.window_area + 1, -1)  # Wh*Ww,Wh*Ww,nH
        return relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww


class Beit(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(
            self,
            img_size: Union[int, Tuple[int, int]] = 224,
            patch_size: Union[int, Tuple[int, int]] = 16,
            in_chans: int = 3,
            num_classes: int = 1000,
            global_pool: str = 'avg',
            embed_dim: int = 768,
            depth: int = 12,
            num_heads: int = 12,
            qkv_bias: bool = True,
            mlp_ratio: float = 4.,
            swiglu_mlp: bool = False,
            scale_mlp: bool = False,
            drop_rate: float = 0.,
            pos_drop_rate: float = 0.,
            proj_drop_rate: float = 0.,
            attn_drop_rate: float = 0.,
            drop_path_rate: float = 0.,
            norm_layer: Callable = LayerNorm,
            init_values: Optional[float] = None,
            use_abs_pos_emb: bool = True,
            use_rel_pos_bias: bool = False,
            use_shared_rel_pos_bias: bool = False,
            head_init_scale: float = 0.001,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_prefix_tokens = 1
        self.grad_checkpointing = False

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )
        num_patches = self.patch_embed.num_patches
        r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) if use_abs_pos_emb else None
        self.pos_drop = nn.Dropout(p=pos_drop_rate)

        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBias(
                window_size=self.patch_embed.grid_size,
                num_heads=num_heads,
            )
        else:
            self.rel_pos_bias = None

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                mlp_ratio=mlp_ratio,
                scale_mlp=scale_mlp,
                swiglu_mlp=swiglu_mlp,
                proj_drop=proj_drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                init_values=init_values,
                window_size=self.patch_embed.grid_size if use_rel_pos_bias else None,
            )
            for i in range(depth)])
        self.feature_info = [
            dict(module=f'blocks.{i}', num_chs=embed_dim, reduction=r) for i in range(depth)]

        use_fc_norm = self.global_pool == 'avg'
        self.norm = nn.Identity() if use_fc_norm else norm_layer(embed_dim)
        self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
        self.head_drop = nn.Dropout(drop_rate)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)
        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)

        self.fix_init_weight()
        if isinstance(self.head, nn.Linear):
            trunc_normal_(self.head.weight, std=.02)
            self.head.weight.data.mul_(head_init_scale)
            self.head.bias.data.mul_(head_init_scale)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        nwd = {'pos_embed', 'cls_token'}
        for n, _ in self.named_parameters():
            if 'relative_position_bias_table' in n:
                nwd.add(n)
        return nwd

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^cls_token|pos_embed|patch_embed|rel_pos_bias',  # stem and embed
            blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))],
        )
        return matcher

    @torch.jit.ignore
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=None):
        self.num_classes = num_classes
        if global_pool is not None:
            self.global_pool = global_pool
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_intermediates(
            self,
            x: torch.Tensor,
            indices: Optional[Union[int, List[int], Tuple[int]]] = None,
            return_prefix_tokens: bool = False,
            norm: bool = False,
            stop_early: bool = True,
            output_fmt: str = 'NCHW',
            intermediates_only: bool = False,
    ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
        """ Forward features that returns intermediates.

        Args:
            x: Input image tensor
            indices: Take last n blocks if an int, if is a sequence, select by matching indices
            return_prefix_tokens: Return both prefix and spatial intermediate tokens
            norm: Apply norm layer to all intermediates
            stop_early: Stop iterating over blocks when last desired intermediate hit
            output_fmt: Shape of intermediate feature outputs
            intermediates_only: Only return intermediate features
        Returns:

        """
        assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.'
        reshape = output_fmt == 'NCHW'
        intermediates = []
        take_indices, max_index = feature_take_indices(len(self.blocks), indices)

        # forward pass
        B, _, height, width = x.shape
        x = self.patch_embed(x)
        x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)
        rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
        if torch.jit.is_scripting() or not stop_early:  # can't slice blocks in torchscript
            blocks = self.blocks
        else:
            blocks = self.blocks[:max_index + 1]
        for i, blk in enumerate(blocks):
            x = blk(x, shared_rel_pos_bias=rel_pos_bias)
            if i in take_indices:
                # normalize intermediates with final norm layer if enabled
                intermediates.append(self.norm(x) if norm else x)

        # process intermediates
        if self.num_prefix_tokens:
            # split prefix (e.g. class, distill) and spatial feature tokens
            prefix_tokens = [y[:, 0:self.num_prefix_tokens] for y in intermediates]
            intermediates = [y[:, self.num_prefix_tokens:] for y in intermediates]
        if reshape:
            # reshape to BCHW output format
            H, W = self.patch_embed.dynamic_feat_size((height, width))
            intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
        if not torch.jit.is_scripting() and return_prefix_tokens:
            # return_prefix not support in torchscript due to poor type handling
            intermediates = list(zip(intermediates, prefix_tokens))

        if intermediates_only:
            return intermediates

        x = self.norm(x)

        return x, intermediates

    def prune_intermediate_layers(
            self,
            n: Union[int, List[int], Tuple[int]] = 1,
            prune_norm: bool = False,
            prune_head: bool = True,
    ):
        """ Prune layers not required for specified intermediates.
        """
        take_indices, max_index = feature_take_indices(len(self.blocks), n)
        self.blocks = self.blocks[:max_index + 1]  # truncate blocks
        if prune_norm:
            self.norm = nn.Identity()
        if prune_head:
            self.fc_norm = nn.Identity()
            self.head = nn.Identity()
        return take_indices

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
        for blk in self.blocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(blk, x, shared_rel_pos_bias=rel_pos_bias)
            else:
                x = blk(x, shared_rel_pos_bias=rel_pos_bias)
        x = self.norm(x)
        return x

    def forward_head(self, x, pre_logits: bool = False):
        if self.global_pool:
            x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0]
        x = self.fc_norm(x)
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'beit_base_patch16_224.in22k_ft_in22k_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth',
        hf_hub_id='timm/'),
    'beit_base_patch16_384.in22k_ft_in22k_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_384_pt22k_ft22kto1k.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), crop_pct=1.0,
    ),
    'beit_base_patch16_224.in22k_ft_in22k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22k.pth',
        hf_hub_id='timm/',
        num_classes=21841,
    ),
    'beit_large_patch16_224.in22k_ft_in22k_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22kto1k.pth',
        hf_hub_id='timm/'),
    'beit_large_patch16_384.in22k_ft_in22k_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_384_pt22k_ft22kto1k.pth',
        hf_hub_id='timm/',
        input_size=(3, 384, 384), crop_pct=1.0,
    ),
    'beit_large_patch16_512.in22k_ft_in22k_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_512_pt22k_ft22kto1k.pth',
        hf_hub_id='timm/',
        input_size=(3, 512, 512), crop_pct=1.0,
    ),
    'beit_large_patch16_224.in22k_ft_in22k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_large_patch16_224_pt22k_ft22k.pth',
        hf_hub_id='timm/',
        num_classes=21841,
    ),

    'beitv2_base_patch16_224.in1k_ft_in22k_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21kto1k.pth',
        hf_hub_id='timm/',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
    ),
    'beitv2_base_patch16_224.in1k_ft_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft1k.pth',
        hf_hub_id='timm/',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
    ),
    'beitv2_base_patch16_224.in1k_ft_in22k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth',
        hf_hub_id='timm/',
        num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
    ),
    'beitv2_large_patch16_224.in1k_ft_in22k_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21kto1k.pth',
        hf_hub_id='timm/',
        crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
    ),
    'beitv2_large_patch16_224.in1k_ft_in1k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft1k.pth',
        hf_hub_id='timm/',
        crop_pct=0.95, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
    ),
    'beitv2_large_patch16_224.in1k_ft_in22k': _cfg(
        #url='https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth',
        hf_hub_id='timm/',
        num_classes=21841, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD
    ),
})


def _beit_checkpoint_filter_fn(state_dict, model, interpolation='bicubic', antialias=True):
    state_dict = state_dict.get('model', state_dict)
    state_dict = state_dict.get('module', state_dict)
    # beit v2 didn't strip module

    out_dict = {}
    for k, v in state_dict.items():
        if 'relative_position_index' in k:
            continue
        if 'patch_embed.proj.weight' in k:
            O, I, H, W = model.patch_embed.proj.weight.shape
            if v.shape[-1] != W or v.shape[-2] != H:
                v = resample_patch_embed(
                    v,
                    (H, W),
                    interpolation=interpolation,
                    antialias=antialias,
                    verbose=True,
                )
        elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]:
            # To resize pos embedding when using model at different size from pretrained weights
            num_prefix_tokens = 1
            v = resample_abs_pos_embed(
                v,
                new_size=model.patch_embed.grid_size,
                num_prefix_tokens=num_prefix_tokens,
                interpolation=interpolation,
                antialias=antialias,
                verbose=True,
            )
        elif k.endswith('relative_position_bias_table'):
            m = model.get_submodule(k[:-29])
            if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]:
                v = resize_rel_pos_bias_table(
                    v,
                    new_window_size=m.window_size,
                    new_bias_shape=m.relative_position_bias_table.shape,
                )
        out_dict[k] = v
    return out_dict


def _create_beit(variant, pretrained=False, **kwargs):
    out_indices = kwargs.pop('out_indices', 3)
    model = build_model_with_cfg(
        Beit, variant, pretrained,
        pretrained_filter_fn=_beit_checkpoint_filter_fn,
        feature_cfg=dict(out_indices=out_indices, feature_cls='getter'),
        **kwargs,
    )
    return model


@register_model
def beit_base_patch16_224(pretrained=False, **kwargs) -> Beit:
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
        use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1)
    model = _create_beit('beit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def beit_base_patch16_384(pretrained=False, **kwargs) -> Beit:
    model_args = dict(
        img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12,
        use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1)
    model = _create_beit('beit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def beit_large_patch16_224(pretrained=False, **kwargs) -> Beit:
    model_args = dict(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16,
        use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
    model = _create_beit('beit_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def beit_large_patch16_384(pretrained=False, **kwargs) -> Beit:
    model_args = dict(
        img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16,
        use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
    model = _create_beit('beit_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def beit_large_patch16_512(pretrained=False, **kwargs) -> Beit:
    model_args = dict(
        img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16,
        use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
    model = _create_beit('beit_large_patch16_512', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def beitv2_base_patch16_224(pretrained=False, **kwargs) -> Beit:
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
        use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
    model = _create_beit('beitv2_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def beitv2_large_patch16_224(pretrained=False, **kwargs) -> Beit:
    model_args = dict(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16,
        use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-5)
    model = _create_beit('beitv2_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model