File size: 85,818 Bytes
786f6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 |
""" Bring-Your-Own-Blocks Network
A flexible network w/ dataclass based config for stacking those NN blocks.
This model is currently used to implement the following networks:
GPU Efficient (ResNets) - gernet_l/m/s (original versions called genet, but this was already used (by SENet author)).
Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
Code and weights: https://github.com/idstcv/GPU-Efficient-Networks, licensed Apache 2.0
RepVGG - repvgg_*
Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
Code and weights: https://github.com/DingXiaoH/RepVGG, licensed MIT
MobileOne - mobileone_*
Paper: `MobileOne: An Improved One millisecond Mobile Backbone` - https://arxiv.org/abs/2206.04040
Code and weights: https://github.com/apple/ml-mobileone, licensed MIT
In all cases the models have been modified to fit within the design of ByobNet. I've remapped
the original weights and verified accuracies.
For GPU Efficient nets, I used the original names for the blocks since they were for the most part
the same as original residual blocks in ResNe(X)t, DarkNet, and other existing models. Note also some
changes introduced in RegNet were also present in the stem and bottleneck blocks for this model.
A significant number of different network archs can be implemented here, including variants of the
above nets that include attention.
Hacked together by / copyright Ross Wightman, 2021.
"""
import math
from dataclasses import dataclass, field, replace
from functools import partial
from typing import Tuple, List, Dict, Optional, Union, Any, Callable, Sequence
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import ClassifierHead, ConvNormAct, BatchNormAct2d, DropPath, AvgPool2dSame, \
create_conv2d, get_act_layer, get_norm_act_layer, get_attn, make_divisible, to_2tuple, EvoNorm2dS0a
from ._builder import build_model_with_cfg
from ._manipulate import named_apply, checkpoint_seq
from ._registry import generate_default_cfgs, register_model
__all__ = ['ByobNet', 'ByoModelCfg', 'ByoBlockCfg', 'create_byob_stem', 'create_block']
@dataclass
class ByoBlockCfg:
type: Union[str, nn.Module]
d: int # block depth (number of block repeats in stage)
c: int # number of output channels for each block in stage
s: int = 2 # stride of stage (first block)
gs: Optional[Union[int, Callable]] = None # group-size of blocks in stage, conv is depthwise if gs == 1
br: float = 1. # bottleneck-ratio of blocks in stage
# NOTE: these config items override the model cfgs that are applied to all blocks by default
attn_layer: Optional[str] = None
attn_kwargs: Optional[Dict[str, Any]] = None
self_attn_layer: Optional[str] = None
self_attn_kwargs: Optional[Dict[str, Any]] = None
block_kwargs: Optional[Dict[str, Any]] = None
@dataclass
class ByoModelCfg:
blocks: Tuple[Union[ByoBlockCfg, Tuple[ByoBlockCfg, ...]], ...]
downsample: str = 'conv1x1'
stem_type: str = '3x3'
stem_pool: Optional[str] = 'maxpool'
stem_chs: int = 32
width_factor: float = 1.0
num_features: int = 0 # num out_channels for final conv, no final 1x1 conv if 0
zero_init_last: bool = True # zero init last weight (usually bn) in residual path
fixed_input_size: bool = False # model constrained to a fixed-input size / img_size must be provided on creation
act_layer: str = 'relu'
norm_layer: str = 'batchnorm'
# NOTE: these config items will be overridden by the block cfg (per-block) if they are set there
attn_layer: Optional[str] = None
attn_kwargs: dict = field(default_factory=lambda: dict())
self_attn_layer: Optional[str] = None
self_attn_kwargs: dict = field(default_factory=lambda: dict())
block_kwargs: Dict[str, Any] = field(default_factory=lambda: dict())
def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1., 1., 1., 1.), groups=0):
c = (64, 128, 256, 512)
group_size = 0
if groups > 0:
group_size = lambda chs, idx: chs // groups if (idx + 1) % 2 == 0 else 0
bcfg = tuple([ByoBlockCfg(type='rep', d=d, c=c * wf, gs=group_size) for d, c, wf in zip(d, c, wf)])
return bcfg
def _mobileone_bcfg(d=(2, 8, 10, 1), wf=(1., 1., 1., 1.), se_blocks=(), num_conv_branches=1):
c = (64, 128, 256, 512)
prev_c = min(64, c[0] * wf[0])
se_blocks = se_blocks or (0,) * len(d)
bcfg = []
for d, c, w, se in zip(d, c, wf, se_blocks):
scfg = []
for i in range(d):
out_c = c * w
bk = dict(num_conv_branches=num_conv_branches)
ak = {}
if i >= d - se:
ak['attn_layer'] = 'se'
scfg += [ByoBlockCfg(type='one', d=1, c=prev_c, gs=1, block_kwargs=bk, **ak)] # depthwise block
scfg += [ByoBlockCfg(
type='one', d=1, c=out_c, gs=0, block_kwargs=dict(kernel_size=1, **bk), **ak)] # pointwise block
prev_c = out_c
bcfg += [scfg]
return bcfg
def interleave_blocks(
types: Tuple[str, str], d,
every: Union[int, List[int]] = 1,
first: bool = False,
**kwargs,
) -> Tuple[ByoBlockCfg]:
""" interleave 2 block types in stack
"""
assert len(types) == 2
if isinstance(every, int):
every = list(range(0 if first else every, d, every + 1))
if not every:
every = [d - 1]
set(every)
blocks = []
for i in range(d):
block_type = types[1] if i in every else types[0]
blocks += [ByoBlockCfg(type=block_type, d=1, **kwargs)]
return tuple(blocks)
def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]:
if not isinstance(stage_blocks_cfg, Sequence):
stage_blocks_cfg = (stage_blocks_cfg,)
block_cfgs = []
for i, cfg in enumerate(stage_blocks_cfg):
block_cfgs += [replace(cfg, d=1) for _ in range(cfg.d)]
return block_cfgs
def num_groups(group_size, channels):
if not group_size: # 0 or None
return 1 # normal conv with 1 group
else:
# NOTE group_size == 1 -> depthwise conv
assert channels % group_size == 0
return channels // group_size
@dataclass
class LayerFn:
conv_norm_act: Callable = ConvNormAct
norm_act: Callable = BatchNormAct2d
act: Callable = nn.ReLU
attn: Optional[Callable] = None
self_attn: Optional[Callable] = None
class DownsampleAvg(nn.Module):
def __init__(
self,
in_chs: int,
out_chs: int,
stride: int = 1,
dilation: int = 1,
apply_act: bool = False,
layers: LayerFn = None,
):
""" AvgPool Downsampling as in 'D' ResNet variants."""
super(DownsampleAvg, self).__init__()
layers = layers or LayerFn()
avg_stride = stride if dilation == 1 else 1
if stride > 1 or dilation > 1:
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
else:
self.pool = nn.Identity()
self.conv = layers.conv_norm_act(in_chs, out_chs, 1, apply_act=apply_act)
def forward(self, x):
return self.conv(self.pool(x))
def create_shortcut(
downsample_type: str,
in_chs: int,
out_chs: int,
stride: int,
dilation: Tuple[int, int],
layers: LayerFn,
**kwargs,
):
assert downsample_type in ('avg', 'conv1x1', '')
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
if not downsample_type:
return None # no shortcut
elif downsample_type == 'avg':
return DownsampleAvg(in_chs, out_chs, stride=stride, dilation=dilation[0], **kwargs)
else:
return layers.conv_norm_act(in_chs, out_chs, kernel_size=1, stride=stride, dilation=dilation[0], **kwargs)
else:
return nn.Identity() # identity shortcut
class BasicBlock(nn.Module):
""" ResNet Basic Block - kxk + kxk
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
group_size: Optional[int] = None,
bottle_ratio: float = 1.0,
downsample: str = 'avg',
attn_last: bool = True,
linear_out: bool = False,
layers: LayerFn = None,
drop_block: Callable = None,
drop_path_rate: float = 0.,
):
super(BasicBlock, self).__init__()
layers = layers or LayerFn()
mid_chs = make_divisible(out_chs * bottle_ratio)
groups = num_groups(group_size, mid_chs)
self.shortcut = create_shortcut(
downsample, in_chs, out_chs,
stride=stride, dilation=dilation, apply_act=False, layers=layers,
)
self.conv1_kxk = layers.conv_norm_act(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0])
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs)
self.conv2_kxk = layers.conv_norm_act(
mid_chs, out_chs, kernel_size,
dilation=dilation[1], groups=groups, drop_layer=drop_block, apply_act=False,
)
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
def init_weights(self, zero_init_last: bool = False):
if zero_init_last and self.shortcut is not None and getattr(self.conv2_kxk.bn, 'weight', None) is not None:
nn.init.zeros_(self.conv2_kxk.bn.weight)
for attn in (self.attn, self.attn_last):
if hasattr(attn, 'reset_parameters'):
attn.reset_parameters()
def forward(self, x):
shortcut = x
x = self.conv1_kxk(x)
x = self.conv2_kxk(x)
x = self.attn(x)
x = self.drop_path(x)
if self.shortcut is not None:
x = x + self.shortcut(shortcut)
return self.act(x)
class BottleneckBlock(nn.Module):
""" ResNet-like Bottleneck Block - 1x1 - kxk - 1x1
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
bottle_ratio: float = 1.,
group_size: Optional[int] = None,
downsample: str = 'avg',
attn_last: bool = False,
linear_out: bool = False,
extra_conv: bool = False,
bottle_in: bool = False,
layers: LayerFn = None,
drop_block: Callable = None,
drop_path_rate: float = 0.,
):
super(BottleneckBlock, self).__init__()
layers = layers or LayerFn()
mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio)
groups = num_groups(group_size, mid_chs)
self.shortcut = create_shortcut(
downsample, in_chs, out_chs,
stride=stride, dilation=dilation, apply_act=False, layers=layers,
)
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1)
self.conv2_kxk = layers.conv_norm_act(
mid_chs, mid_chs, kernel_size,
stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block,
)
if extra_conv:
self.conv2b_kxk = layers.conv_norm_act(
mid_chs, mid_chs, kernel_size, dilation=dilation[1], groups=groups)
else:
self.conv2b_kxk = nn.Identity()
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs)
self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False)
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
def init_weights(self, zero_init_last: bool = False):
if zero_init_last and self.shortcut is not None and getattr(self.conv3_1x1.bn, 'weight', None) is not None:
nn.init.zeros_(self.conv3_1x1.bn.weight)
for attn in (self.attn, self.attn_last):
if hasattr(attn, 'reset_parameters'):
attn.reset_parameters()
def forward(self, x):
shortcut = x
x = self.conv1_1x1(x)
x = self.conv2_kxk(x)
x = self.conv2b_kxk(x)
x = self.attn(x)
x = self.conv3_1x1(x)
x = self.attn_last(x)
x = self.drop_path(x)
if self.shortcut is not None:
x = x + self.shortcut(shortcut)
return self.act(x)
class DarkBlock(nn.Module):
""" DarkNet-like (1x1 + 3x3 w/ stride) block
The GE-Net impl included a 1x1 + 3x3 block in their search space. It was not used in the feature models.
This block is pretty much a DarkNet block (also DenseNet) hence the name. Neither DarkNet or DenseNet
uses strides within the block (external 3x3 or maxpool downsampling is done in front of the block repeats).
If one does want to use a lot of these blocks w/ stride, I'd recommend using the EdgeBlock (3x3 /w stride + 1x1)
for more optimal compute.
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
bottle_ratio: float = 1.0,
group_size: Optional[int] = None,
downsample: str = 'avg',
attn_last: bool = True,
linear_out: bool = False,
layers: LayerFn = None,
drop_block: Callable = None,
drop_path_rate: float = 0.,
):
super(DarkBlock, self).__init__()
layers = layers or LayerFn()
mid_chs = make_divisible(out_chs * bottle_ratio)
groups = num_groups(group_size, mid_chs)
self.shortcut = create_shortcut(
downsample, in_chs, out_chs,
stride=stride, dilation=dilation, apply_act=False, layers=layers,
)
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1)
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs)
self.conv2_kxk = layers.conv_norm_act(
mid_chs, out_chs, kernel_size,
stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False,
)
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
def init_weights(self, zero_init_last: bool = False):
if zero_init_last and self.shortcut is not None and getattr(self.conv2_kxk.bn, 'weight', None) is not None:
nn.init.zeros_(self.conv2_kxk.bn.weight)
for attn in (self.attn, self.attn_last):
if hasattr(attn, 'reset_parameters'):
attn.reset_parameters()
def forward(self, x):
shortcut = x
x = self.conv1_1x1(x)
x = self.attn(x)
x = self.conv2_kxk(x)
x = self.attn_last(x)
x = self.drop_path(x)
if self.shortcut is not None:
x = x + self.shortcut(shortcut)
return self.act(x)
class EdgeBlock(nn.Module):
""" EdgeResidual-like (3x3 + 1x1) block
A two layer block like DarkBlock, but with the order of the 3x3 and 1x1 convs reversed.
Very similar to the EfficientNet Edge-Residual block but this block it ends with activations, is
intended to be used with either expansion or bottleneck contraction, and can use DW/group/non-grouped convs.
FIXME is there a more common 3x3 + 1x1 conv block to name this after?
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
bottle_ratio: float = 1.0,
group_size: Optional[int] = None,
downsample: str = 'avg',
attn_last: bool = False,
linear_out: bool = False,
layers: LayerFn = None,
drop_block: Callable = None,
drop_path_rate: float = 0.,
):
super(EdgeBlock, self).__init__()
layers = layers or LayerFn()
mid_chs = make_divisible(out_chs * bottle_ratio)
groups = num_groups(group_size, mid_chs)
self.shortcut = create_shortcut(
downsample, in_chs, out_chs,
stride=stride, dilation=dilation, apply_act=False, layers=layers,
)
self.conv1_kxk = layers.conv_norm_act(
in_chs, mid_chs, kernel_size,
stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block,
)
self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs)
self.conv2_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False)
self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
def init_weights(self, zero_init_last: bool = False):
if zero_init_last and self.shortcut is not None and getattr(self.conv2_1x1.bn, 'weight', None) is not None:
nn.init.zeros_(self.conv2_1x1.bn.weight)
for attn in (self.attn, self.attn_last):
if hasattr(attn, 'reset_parameters'):
attn.reset_parameters()
def forward(self, x):
shortcut = x
x = self.conv1_kxk(x)
x = self.attn(x)
x = self.conv2_1x1(x)
x = self.attn_last(x)
x = self.drop_path(x)
if self.shortcut is not None:
x = x + self.shortcut(shortcut)
return self.act(x)
class RepVggBlock(nn.Module):
""" RepVGG Block.
Adapted from impl at https://github.com/DingXiaoH/RepVGG
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
bottle_ratio: float = 1.0,
group_size: Optional[int] = None,
downsample: str = '',
layers: LayerFn = None,
drop_block: Callable = None,
drop_path_rate: float = 0.,
inference_mode: bool = False
):
super(RepVggBlock, self).__init__()
self.groups = groups = num_groups(group_size, in_chs)
layers = layers or LayerFn()
if inference_mode:
self.reparam_conv = nn.Conv2d(
in_channels=in_chs,
out_channels=out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
groups=groups,
bias=True,
)
else:
self.reparam_conv = None
use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1]
self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None
self.conv_kxk = layers.conv_norm_act(
in_chs, out_chs, kernel_size,
stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False,
)
self.conv_1x1 = layers.conv_norm_act(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity()
self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs)
self.act = layers.act(inplace=True)
def init_weights(self, zero_init_last: bool = False):
# NOTE this init overrides that base model init with specific changes for the block type
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
nn.init.normal_(m.weight, .1, .1)
nn.init.normal_(m.bias, 0, .1)
if hasattr(self.attn, 'reset_parameters'):
self.attn.reset_parameters()
def forward(self, x):
if self.reparam_conv is not None:
return self.act(self.attn(self.reparam_conv(x)))
if self.identity is None:
x = self.conv_1x1(x) + self.conv_kxk(x)
else:
identity = self.identity(x)
x = self.conv_1x1(x) + self.conv_kxk(x)
x = self.drop_path(x) # not in the paper / official impl, experimental
x += identity
x = self.attn(x) # no attn in the paper / official impl, experimental
return self.act(x)
def reparameterize(self):
""" Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
architecture used at training time to obtain a plain CNN-like structure
for inference.
"""
if self.reparam_conv is not None:
return
kernel, bias = self._get_kernel_bias()
self.reparam_conv = nn.Conv2d(
in_channels=self.conv_kxk.conv.in_channels,
out_channels=self.conv_kxk.conv.out_channels,
kernel_size=self.conv_kxk.conv.kernel_size,
stride=self.conv_kxk.conv.stride,
padding=self.conv_kxk.conv.padding,
dilation=self.conv_kxk.conv.dilation,
groups=self.conv_kxk.conv.groups,
bias=True,
)
self.reparam_conv.weight.data = kernel
self.reparam_conv.bias.data = bias
# Delete un-used branches
for name, para in self.named_parameters():
if 'reparam_conv' in name:
continue
para.detach_()
self.__delattr__('conv_kxk')
self.__delattr__('conv_1x1')
self.__delattr__('identity')
self.__delattr__('drop_path')
def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
""" Method to obtain re-parameterized kernel and bias.
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83
"""
# get weights and bias of scale branch
kernel_1x1 = 0
bias_1x1 = 0
if self.conv_1x1 is not None:
kernel_1x1, bias_1x1 = self._fuse_bn_tensor(self.conv_1x1)
# Pad scale branch kernel to match conv branch kernel size.
pad = self.conv_kxk.conv.kernel_size[0] // 2
kernel_1x1 = torch.nn.functional.pad(kernel_1x1, [pad, pad, pad, pad])
# get weights and bias of skip branch
kernel_identity = 0
bias_identity = 0
if self.identity is not None:
kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity)
# get weights and bias of conv branches
kernel_conv, bias_conv = self._fuse_bn_tensor(self.conv_kxk)
kernel_final = kernel_conv + kernel_1x1 + kernel_identity
bias_final = bias_conv + bias_1x1 + bias_identity
return kernel_final, bias_final
def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]:
""" Method to fuse batchnorm layer with preceeding conv layer.
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95
"""
if isinstance(branch, ConvNormAct):
kernel = branch.conv.weight
running_mean = branch.bn.running_mean
running_var = branch.bn.running_var
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn.eps
else:
assert isinstance(branch, nn.BatchNorm2d)
if not hasattr(self, 'id_tensor'):
in_chs = self.conv_kxk.conv.in_channels
input_dim = in_chs // self.groups
kernel_size = self.conv_kxk.conv.kernel_size
kernel_value = torch.zeros_like(self.conv_kxk.conv.weight)
for i in range(in_chs):
kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1
self.id_tensor = kernel_value
kernel = self.id_tensor
running_mean = branch.running_mean
running_var = branch.running_var
gamma = branch.weight
beta = branch.bias
eps = branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class MobileOneBlock(nn.Module):
""" MobileOne building block.
This block has a multi-branched architecture at train-time
and plain-CNN style architecture at inference time
For more details, please refer to our paper:
`An Improved One millisecond Mobile Backbone` -
https://arxiv.org/pdf/2206.04040.pdf
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
bottle_ratio: float = 1.0, # unused
group_size: Optional[int] = None,
downsample: str = '', # unused
inference_mode: bool = False,
num_conv_branches: int = 1,
layers: LayerFn = None,
drop_block: Callable = None,
drop_path_rate: float = 0.,
) -> None:
""" Construct a MobileOneBlock module.
"""
super(MobileOneBlock, self).__init__()
self.num_conv_branches = num_conv_branches
self.groups = groups = num_groups(group_size, in_chs)
layers = layers or LayerFn()
if inference_mode:
self.reparam_conv = nn.Conv2d(
in_channels=in_chs,
out_channels=out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
groups=groups,
bias=True)
else:
self.reparam_conv = None
# Re-parameterizable skip connection
use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1]
self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None
# Re-parameterizable conv branches
convs = []
for _ in range(self.num_conv_branches):
convs.append(layers.conv_norm_act(
in_chs, out_chs, kernel_size=kernel_size,
stride=stride, groups=groups, apply_act=False))
self.conv_kxk = nn.ModuleList(convs)
# Re-parameterizable scale branch
self.conv_scale = None
if kernel_size > 1:
self.conv_scale = layers.conv_norm_act(
in_chs, out_chs, kernel_size=1,
stride=stride, groups=groups, apply_act=False)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity()
self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs)
self.act = layers.act(inplace=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
""" Apply forward pass. """
# Inference mode forward pass.
if self.reparam_conv is not None:
return self.act(self.attn(self.reparam_conv(x)))
# Multi-branched train-time forward pass.
# Skip branch output
identity_out = 0
if self.identity is not None:
identity_out = self.identity(x)
# Scale branch output
scale_out = 0
if self.conv_scale is not None:
scale_out = self.conv_scale(x)
# Other branches
out = scale_out
for ck in self.conv_kxk:
out += ck(x)
out = self.drop_path(out)
out += identity_out
return self.act(self.attn(out))
def reparameterize(self):
""" Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
architecture used at training time to obtain a plain CNN-like structure
for inference.
"""
if self.reparam_conv is not None:
return
kernel, bias = self._get_kernel_bias()
self.reparam_conv = nn.Conv2d(
in_channels=self.conv_kxk[0].conv.in_channels,
out_channels=self.conv_kxk[0].conv.out_channels,
kernel_size=self.conv_kxk[0].conv.kernel_size,
stride=self.conv_kxk[0].conv.stride,
padding=self.conv_kxk[0].conv.padding,
dilation=self.conv_kxk[0].conv.dilation,
groups=self.conv_kxk[0].conv.groups,
bias=True)
self.reparam_conv.weight.data = kernel
self.reparam_conv.bias.data = bias
# Delete un-used branches
for name, para in self.named_parameters():
if 'reparam_conv' in name:
continue
para.detach_()
self.__delattr__('conv_kxk')
self.__delattr__('conv_scale')
self.__delattr__('identity')
self.__delattr__('drop_path')
def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
""" Method to obtain re-parameterized kernel and bias.
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83
"""
# get weights and bias of scale branch
kernel_scale = 0
bias_scale = 0
if self.conv_scale is not None:
kernel_scale, bias_scale = self._fuse_bn_tensor(self.conv_scale)
# Pad scale branch kernel to match conv branch kernel size.
pad = self.conv_kxk[0].conv.kernel_size[0] // 2
kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad])
# get weights and bias of skip branch
kernel_identity = 0
bias_identity = 0
if self.identity is not None:
kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity)
# get weights and bias of conv branches
kernel_conv = 0
bias_conv = 0
for ix in range(self.num_conv_branches):
_kernel, _bias = self._fuse_bn_tensor(self.conv_kxk[ix])
kernel_conv += _kernel
bias_conv += _bias
kernel_final = kernel_conv + kernel_scale + kernel_identity
bias_final = bias_conv + bias_scale + bias_identity
return kernel_final, bias_final
def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]:
""" Method to fuse batchnorm layer with preceeding conv layer.
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95
"""
if isinstance(branch, ConvNormAct):
kernel = branch.conv.weight
running_mean = branch.bn.running_mean
running_var = branch.bn.running_var
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn.eps
else:
assert isinstance(branch, nn.BatchNorm2d)
if not hasattr(self, 'id_tensor'):
in_chs = self.conv_kxk[0].conv.in_channels
input_dim = in_chs // self.groups
kernel_size = self.conv_kxk[0].conv.kernel_size
kernel_value = torch.zeros_like(self.conv_kxk[0].conv.weight)
for i in range(in_chs):
kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1
self.id_tensor = kernel_value
kernel = self.id_tensor
running_mean = branch.running_mean
running_var = branch.running_var
gamma = branch.weight
beta = branch.bias
eps = branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class SelfAttnBlock(nn.Module):
""" ResNet-like Bottleneck Block - 1x1 - optional kxk - self attn - 1x1
"""
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 1,
dilation: Tuple[int, int] = (1, 1),
bottle_ratio: float = 1.,
group_size: Optional[int] = None,
downsample: str = 'avg',
extra_conv: bool = False,
linear_out: bool = False,
bottle_in: bool = False,
post_attn_na: bool = True,
feat_size: Optional[Tuple[int, int]] = None,
layers: LayerFn = None,
drop_block: Callable = None,
drop_path_rate: float = 0.,
):
super(SelfAttnBlock, self).__init__()
assert layers is not None
mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio)
groups = num_groups(group_size, mid_chs)
self.shortcut = create_shortcut(
downsample, in_chs, out_chs,
stride=stride, dilation=dilation, apply_act=False, layers=layers,
)
self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1)
if extra_conv:
self.conv2_kxk = layers.conv_norm_act(
mid_chs, mid_chs, kernel_size,
stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block,
)
stride = 1 # striding done via conv if enabled
else:
self.conv2_kxk = nn.Identity()
opt_kwargs = {} if feat_size is None else dict(feat_size=feat_size)
# FIXME need to dilate self attn to have dilated network support, moop moop
self.self_attn = layers.self_attn(mid_chs, stride=stride, **opt_kwargs)
self.post_attn = layers.norm_act(mid_chs) if post_attn_na else nn.Identity()
self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.act = nn.Identity() if linear_out else layers.act(inplace=True)
def init_weights(self, zero_init_last: bool = False):
if zero_init_last and self.shortcut is not None and getattr(self.conv3_1x1.bn, 'weight', None) is not None:
nn.init.zeros_(self.conv3_1x1.bn.weight)
if hasattr(self.self_attn, 'reset_parameters'):
self.self_attn.reset_parameters()
def forward(self, x):
shortcut = x
x = self.conv1_1x1(x)
x = self.conv2_kxk(x)
x = self.self_attn(x)
x = self.post_attn(x)
x = self.conv3_1x1(x)
x = self.drop_path(x)
if self.shortcut is not None:
x = x + self.shortcut(shortcut)
return self.act(x)
_block_registry = dict(
basic=BasicBlock,
bottle=BottleneckBlock,
dark=DarkBlock,
edge=EdgeBlock,
rep=RepVggBlock,
one=MobileOneBlock,
self_attn=SelfAttnBlock,
)
def register_block(block_type:str, block_fn: nn.Module):
_block_registry[block_type] = block_fn
def create_block(block: Union[str, nn.Module], **kwargs):
if isinstance(block, (nn.Module, partial)):
return block(**kwargs)
assert block in _block_registry, f'Unknown block type ({block}'
return _block_registry[block](**kwargs)
class Stem(nn.Sequential):
def __init__(
self,
in_chs: int,
out_chs: int,
kernel_size: int = 3,
stride: int = 4,
pool: str = 'maxpool',
num_rep: int = 3,
num_act: Optional[int] = None,
chs_decay: float = 0.5,
layers: LayerFn = None,
):
super().__init__()
assert stride in (2, 4)
layers = layers or LayerFn()
if isinstance(out_chs, (list, tuple)):
num_rep = len(out_chs)
stem_chs = out_chs
else:
stem_chs = [round(out_chs * chs_decay ** i) for i in range(num_rep)][::-1]
self.stride = stride
self.feature_info = [] # track intermediate features
prev_feat = ''
stem_strides = [2] + [1] * (num_rep - 1)
if stride == 4 and not pool:
# set last conv in stack to be strided if stride == 4 and no pooling layer
stem_strides[-1] = 2
num_act = num_rep if num_act is None else num_act
# if num_act < num_rep, first convs in stack won't have bn + act
stem_norm_acts = [False] * (num_rep - num_act) + [True] * num_act
prev_chs = in_chs
curr_stride = 1
for i, (ch, s, na) in enumerate(zip(stem_chs, stem_strides, stem_norm_acts)):
layer_fn = layers.conv_norm_act if na else create_conv2d
conv_name = f'conv{i + 1}'
if i > 0 and s > 1:
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat))
self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s))
prev_chs = ch
curr_stride *= s
prev_feat = conv_name
if pool and 'max' in pool.lower():
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat))
self.add_module('pool', nn.MaxPool2d(3, 2, 1))
curr_stride *= 2
prev_feat = 'pool'
self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat))
assert curr_stride == stride
def create_byob_stem(
in_chs: int,
out_chs: int,
stem_type: str = '',
pool_type: str = '',
feat_prefix: str = 'stem',
layers: LayerFn = None,
):
layers = layers or LayerFn()
assert stem_type in ('', 'quad', 'quad2', 'tiered', 'deep', 'rep', 'one', '7x7', '3x3')
if 'quad' in stem_type:
# based on NFNet stem, stack of 4 3x3 convs
num_act = 2 if 'quad2' in stem_type else None
stem = Stem(in_chs, out_chs, num_rep=4, num_act=num_act, pool=pool_type, layers=layers)
elif 'tiered' in stem_type:
# 3x3 stack of 3 convs as in my ResNet-T
stem = Stem(in_chs, (3 * out_chs // 8, out_chs // 2, out_chs), pool=pool_type, layers=layers)
elif 'deep' in stem_type:
# 3x3 stack of 3 convs as in ResNet-D
stem = Stem(in_chs, out_chs, num_rep=3, chs_decay=1.0, pool=pool_type, layers=layers)
elif 'rep' in stem_type:
stem = RepVggBlock(in_chs, out_chs, stride=2, layers=layers)
elif 'one' in stem_type:
stem = MobileOneBlock(in_chs, out_chs, kernel_size=3, stride=2, layers=layers)
elif '7x7' in stem_type:
# 7x7 stem conv as in ResNet
if pool_type:
stem = Stem(in_chs, out_chs, 7, num_rep=1, pool=pool_type, layers=layers)
else:
stem = layers.conv_norm_act(in_chs, out_chs, 7, stride=2)
else:
# 3x3 stem conv as in RegNet is the default
if pool_type:
stem = Stem(in_chs, out_chs, 3, num_rep=1, pool=pool_type, layers=layers)
else:
stem = layers.conv_norm_act(in_chs, out_chs, 3, stride=2)
if isinstance(stem, Stem):
feature_info = [dict(f, module='.'.join([feat_prefix, f['module']])) for f in stem.feature_info]
else:
feature_info = [dict(num_chs=out_chs, reduction=2, module=feat_prefix)]
return stem, feature_info
def reduce_feat_size(feat_size, stride=2):
return None if feat_size is None else tuple([s // stride for s in feat_size])
def override_kwargs(block_kwargs, model_kwargs):
""" Override model level attn/self-attn/block kwargs w/ block level
NOTE: kwargs are NOT merged across levels, block_kwargs will fully replace model_kwargs
for the block if set to anything that isn't None.
i.e. an empty block_kwargs dict will remove kwargs set at model level for that block
"""
out_kwargs = block_kwargs if block_kwargs is not None else model_kwargs
return out_kwargs or {} # make sure None isn't returned
def update_block_kwargs(block_kwargs: Dict[str, Any], block_cfg: ByoBlockCfg, model_cfg: ByoModelCfg, ):
layer_fns = block_kwargs['layers']
# override attn layer / args with block local config
attn_set = block_cfg.attn_layer is not None
if attn_set or block_cfg.attn_kwargs is not None:
# override attn layer config
if attn_set and not block_cfg.attn_layer:
# empty string for attn_layer type will disable attn for this block
attn_layer = None
else:
attn_kwargs = override_kwargs(block_cfg.attn_kwargs, model_cfg.attn_kwargs)
attn_layer = block_cfg.attn_layer or model_cfg.attn_layer
attn_layer = partial(get_attn(attn_layer), **attn_kwargs) if attn_layer is not None else None
layer_fns = replace(layer_fns, attn=attn_layer)
# override self-attn layer / args with block local cfg
self_attn_set = block_cfg.self_attn_layer is not None
if self_attn_set or block_cfg.self_attn_kwargs is not None:
# override attn layer config
if self_attn_set and not block_cfg.self_attn_layer: # attn_layer == ''
# empty string for self_attn_layer type will disable attn for this block
self_attn_layer = None
else:
self_attn_kwargs = override_kwargs(block_cfg.self_attn_kwargs, model_cfg.self_attn_kwargs)
self_attn_layer = block_cfg.self_attn_layer or model_cfg.self_attn_layer
self_attn_layer = partial(get_attn(self_attn_layer), **self_attn_kwargs) \
if self_attn_layer is not None else None
layer_fns = replace(layer_fns, self_attn=self_attn_layer)
block_kwargs['layers'] = layer_fns
# add additional block_kwargs specified in block_cfg or model_cfg, precedence to block if set
block_kwargs.update(override_kwargs(block_cfg.block_kwargs, model_cfg.block_kwargs))
def create_byob_stages(
cfg: ByoModelCfg,
drop_path_rate: float,
output_stride: int,
stem_feat: Dict[str, Any],
feat_size: Optional[int] = None,
layers: Optional[LayerFn] = None,
block_kwargs_fn: Optional[Callable] = update_block_kwargs,
):
layers = layers or LayerFn()
feature_info = []
block_cfgs = [expand_blocks_cfg(s) for s in cfg.blocks]
depths = [sum([bc.d for bc in stage_bcs]) for stage_bcs in block_cfgs]
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
dilation = 1
net_stride = stem_feat['reduction']
prev_chs = stem_feat['num_chs']
prev_feat = stem_feat
stages = []
for stage_idx, stage_block_cfgs in enumerate(block_cfgs):
stride = stage_block_cfgs[0].s
if stride != 1 and prev_feat:
feature_info.append(prev_feat)
if net_stride >= output_stride and stride > 1:
dilation *= stride
stride = 1
net_stride *= stride
first_dilation = 1 if dilation in (1, 2) else 2
blocks = []
for block_idx, block_cfg in enumerate(stage_block_cfgs):
out_chs = make_divisible(block_cfg.c * cfg.width_factor)
group_size = block_cfg.gs
if isinstance(group_size, Callable):
group_size = group_size(out_chs, block_idx)
block_kwargs = dict( # Blocks used in this model must accept these arguments
in_chs=prev_chs,
out_chs=out_chs,
stride=stride if block_idx == 0 else 1,
dilation=(first_dilation, dilation),
group_size=group_size,
bottle_ratio=block_cfg.br,
downsample=cfg.downsample,
drop_path_rate=dpr[stage_idx][block_idx],
layers=layers,
)
if block_cfg.type in ('self_attn',):
# add feat_size arg for blocks that support/need it
block_kwargs['feat_size'] = feat_size
block_kwargs_fn(block_kwargs, block_cfg=block_cfg, model_cfg=cfg)
blocks += [create_block(block_cfg.type, **block_kwargs)]
first_dilation = dilation
prev_chs = out_chs
if stride > 1 and block_idx == 0:
feat_size = reduce_feat_size(feat_size, stride)
stages += [nn.Sequential(*blocks)]
prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}')
feature_info.append(prev_feat)
return nn.Sequential(*stages), feature_info
def get_layer_fns(cfg: ByoModelCfg):
act = get_act_layer(cfg.act_layer)
norm_act = get_norm_act_layer(norm_layer=cfg.norm_layer, act_layer=act)
conv_norm_act = partial(ConvNormAct, norm_layer=cfg.norm_layer, act_layer=act)
attn = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None
self_attn = partial(get_attn(cfg.self_attn_layer), **cfg.self_attn_kwargs) if cfg.self_attn_layer else None
layer_fn = LayerFn(conv_norm_act=conv_norm_act, norm_act=norm_act, act=act, attn=attn, self_attn=self_attn)
return layer_fn
class ByobNet(nn.Module):
""" 'Bring-your-own-blocks' Net
A flexible network backbone that allows building model stem + blocks via
dataclass cfg definition w/ factory functions for module instantiation.
Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act).
"""
def __init__(
self,
cfg: ByoModelCfg,
num_classes: int = 1000,
in_chans: int = 3,
global_pool: str = 'avg',
output_stride: int = 32,
img_size: Optional[Union[int, Tuple[int, int]]] = None,
drop_rate: float = 0.,
drop_path_rate: float =0.,
zero_init_last: bool = True,
**kwargs,
):
"""
Args:
cfg: Model architecture configuration.
num_classes: Number of classifier classes.
in_chans: Number of input channels.
global_pool: Global pooling type.
output_stride: Output stride of network, one of (8, 16, 32).
img_size: Image size for fixed image size models (i.e. self-attn).
drop_rate: Classifier dropout rate.
drop_path_rate: Stochastic depth drop-path rate.
zero_init_last: Zero-init last weight of residual path.
**kwargs: Extra kwargs overlayed onto cfg.
"""
super().__init__()
self.num_classes = num_classes
self.drop_rate = drop_rate
self.grad_checkpointing = False
cfg = replace(cfg, **kwargs) # overlay kwargs onto cfg
layers = get_layer_fns(cfg)
if cfg.fixed_input_size:
assert img_size is not None, 'img_size argument is required for fixed input size model'
feat_size = to_2tuple(img_size) if img_size is not None else None
self.feature_info = []
stem_chs = int(round((cfg.stem_chs or cfg.blocks[0].c) * cfg.width_factor))
self.stem, stem_feat = create_byob_stem(in_chans, stem_chs, cfg.stem_type, cfg.stem_pool, layers=layers)
self.feature_info.extend(stem_feat[:-1])
feat_size = reduce_feat_size(feat_size, stride=stem_feat[-1]['reduction'])
self.stages, stage_feat = create_byob_stages(
cfg,
drop_path_rate,
output_stride,
stem_feat[-1],
layers=layers,
feat_size=feat_size,
)
self.feature_info.extend(stage_feat[:-1])
prev_chs = stage_feat[-1]['num_chs']
if cfg.num_features:
self.num_features = int(round(cfg.width_factor * cfg.num_features))
self.final_conv = layers.conv_norm_act(prev_chs, self.num_features, 1)
else:
self.num_features = prev_chs
self.final_conv = nn.Identity()
self.feature_info += [
dict(num_chs=self.num_features, reduction=stage_feat[-1]['reduction'], module='final_conv')]
self.head = ClassifierHead(
self.num_features,
num_classes,
pool_type=global_pool,
drop_rate=self.drop_rate,
)
# init weights
named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^stem',
blocks=[
(r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None),
(r'^final_conv', (99999,))
]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head.reset(num_classes, global_pool)
def forward_features(self, x):
x = self.stem(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.stages, x)
else:
x = self.stages(x)
x = self.final_conv(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _init_weights(module, name='', zero_init_last=False):
if isinstance(module, nn.Conv2d):
fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels
fan_out //= module.groups
module.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Linear):
nn.init.normal_(module.weight, mean=0.0, std=0.01)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.BatchNorm2d):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
elif hasattr(module, 'init_weights'):
module.init_weights(zero_init_last=zero_init_last)
model_cfgs = dict(
gernet_l=ByoModelCfg(
blocks=(
ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.),
ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.),
ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4),
ByoBlockCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.),
ByoBlockCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.),
),
stem_chs=32,
stem_pool=None,
num_features=2560,
),
gernet_m=ByoModelCfg(
blocks=(
ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.),
ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.),
ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4),
ByoBlockCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.),
ByoBlockCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.),
),
stem_chs=32,
stem_pool=None,
num_features=2560,
),
gernet_s=ByoModelCfg(
blocks=(
ByoBlockCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.),
ByoBlockCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.),
ByoBlockCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4),
ByoBlockCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.),
ByoBlockCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.),
),
stem_chs=13,
stem_pool=None,
num_features=1920,
),
repvgg_a0=ByoModelCfg(
blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(0.75, 0.75, 0.75, 2.5)),
stem_type='rep',
stem_chs=48,
),
repvgg_a1=ByoModelCfg(
blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1, 1, 1, 2.5)),
stem_type='rep',
stem_chs=64,
),
repvgg_a2=ByoModelCfg(
blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1.5, 1.5, 1.5, 2.75)),
stem_type='rep',
stem_chs=64,
),
repvgg_b0=ByoModelCfg(
blocks=_rep_vgg_bcfg(wf=(1., 1., 1., 2.5)),
stem_type='rep',
stem_chs=64,
),
repvgg_b1=ByoModelCfg(
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.)),
stem_type='rep',
stem_chs=64,
),
repvgg_b1g4=ByoModelCfg(
blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.), groups=4),
stem_type='rep',
stem_chs=64,
),
repvgg_b2=ByoModelCfg(
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.)),
stem_type='rep',
stem_chs=64,
),
repvgg_b2g4=ByoModelCfg(
blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.), groups=4),
stem_type='rep',
stem_chs=64,
),
repvgg_b3=ByoModelCfg(
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.)),
stem_type='rep',
stem_chs=64,
),
repvgg_b3g4=ByoModelCfg(
blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.), groups=4),
stem_type='rep',
stem_chs=64,
),
repvgg_d2se=ByoModelCfg(
blocks=_rep_vgg_bcfg(d=(8, 14, 24, 1), wf=(2.5, 2.5, 2.5, 5.)),
stem_type='rep',
stem_chs=64,
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.0625, rd_divisor=1),
),
# 4 x conv stem w/ 2 act, no maxpool, 2,4,6,4 repeats, group size 32 in first 3 blocks
# DW convs in last block, 2048 pre-FC, silu act
resnet51q=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0),
),
stem_chs=128,
stem_type='quad2',
stem_pool=None,
num_features=2048,
act_layer='silu',
),
# 4 x conv stem w/ 4 act, no maxpool, 1,4,6,4 repeats, edge block first, group size 32 in next 2 blocks
# DW convs in last block, 4 conv for each bottle block, 2048 pre-FC, silu act
resnet61q=ByoModelCfg(
blocks=(
ByoBlockCfg(type='edge', d=1, c=256, s=1, gs=0, br=1.0, block_kwargs=dict()),
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0),
),
stem_chs=128,
stem_type='quad',
stem_pool=None,
num_features=2048,
act_layer='silu',
block_kwargs=dict(extra_conv=True),
),
# A series of ResNeXt-26 models w/ one of none, GC, SE, ECA, BAT attn, group size 32, SiLU act,
# and a tiered stem w/ maxpool
resnext26ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
),
gcresnext26ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
attn_layer='gca',
),
seresnext26ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
attn_layer='se',
),
eca_resnext26ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
attn_layer='eca',
),
bat_resnext26ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
attn_layer='bat',
attn_kwargs=dict(block_size=8)
),
# ResNet-32 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, no pre-fc feat layer, tiered stem w/o maxpool
resnet32ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
num_features=0,
act_layer='silu',
),
# ResNet-33 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, 1280 pre-FC feat, tiered stem w/o maxpool
resnet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
num_features=1280,
act_layer='silu',
),
# A series of ResNet-33 (2, 3, 3, 2) models w/ one of GC, SE, ECA attn, no groups, SiLU act, 1280 pre-FC feat
# and a tiered stem w/ no maxpool
gcresnet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
num_features=1280,
act_layer='silu',
attn_layer='gca',
),
seresnet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
num_features=1280,
act_layer='silu',
attn_layer='se',
),
eca_resnet33ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25),
ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
num_features=1280,
act_layer='silu',
attn_layer='eca',
),
gcresnet50t=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25),
ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25),
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
attn_layer='gca',
),
gcresnext50ts=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25),
ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25),
),
stem_chs=64,
stem_type='tiered',
stem_pool='maxpool',
act_layer='silu',
attn_layer='gca',
),
# experimental models, closer to a RegNetZ than a ResNet. Similar to EfficientNets but w/ groups instead of DW
regnetz_b16=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3),
),
stem_chs=32,
stem_pool='',
downsample='',
num_features=1536,
act_layer='silu',
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_c16=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4),
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4),
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4),
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4),
),
stem_chs=32,
stem_pool='',
downsample='',
num_features=1536,
act_layer='silu',
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_d32=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=32, br=4),
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=32, br=4),
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=32, br=4),
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=32, br=4),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
downsample='',
num_features=1792,
act_layer='silu',
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_d8=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4),
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
downsample='',
num_features=1792,
act_layer='silu',
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_e8=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=96, s=1, gs=8, br=4),
ByoBlockCfg(type='bottle', d=8, c=192, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=16, c=384, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=8, br=4),
),
stem_chs=64,
stem_type='tiered',
stem_pool='',
downsample='',
num_features=2048,
act_layer='silu',
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
# experimental EvoNorm configs
regnetz_b16_evos=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3),
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3),
),
stem_chs=32,
stem_pool='',
downsample='',
num_features=1536,
act_layer='silu',
norm_layer=partial(EvoNorm2dS0a, group_size=16),
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_c16_evos=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4),
ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4),
ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4),
ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4),
),
stem_chs=32,
stem_pool='',
downsample='',
num_features=1536,
act_layer='silu',
norm_layer=partial(EvoNorm2dS0a, group_size=16),
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
regnetz_d8_evos=ByoModelCfg(
blocks=(
ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4),
ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4),
ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4),
),
stem_chs=64,
stem_type='deep',
stem_pool='',
downsample='',
num_features=1792,
act_layer='silu',
norm_layer=partial(EvoNorm2dS0a, group_size=16),
attn_layer='se',
attn_kwargs=dict(rd_ratio=0.25),
block_kwargs=dict(bottle_in=True, linear_out=True),
),
mobileone_s0=ByoModelCfg(
blocks=_mobileone_bcfg(wf=(0.75, 1.0, 1.0, 2.), num_conv_branches=4),
stem_type='one',
stem_chs=48,
),
mobileone_s1=ByoModelCfg(
blocks=_mobileone_bcfg(wf=(1.5, 1.5, 2.0, 2.5)),
stem_type='one',
stem_chs=64,
),
mobileone_s2=ByoModelCfg(
blocks=_mobileone_bcfg(wf=(1.5, 2.0, 2.5, 4.0)),
stem_type='one',
stem_chs=64,
),
mobileone_s3=ByoModelCfg(
blocks=_mobileone_bcfg(wf=(2.0, 2.5, 3.0, 4.0)),
stem_type='one',
stem_chs=64,
),
mobileone_s4=ByoModelCfg(
blocks=_mobileone_bcfg(wf=(3.0, 3.5, 3.5, 4.0), se_blocks=(0, 0, 5, 1)),
stem_type='one',
stem_chs=64,
),
)
def _create_byobnet(variant, pretrained=False, **kwargs):
return build_model_with_cfg(
ByobNet, variant, pretrained,
model_cfg=model_cfgs[variant],
feature_cfg=dict(flatten_sequential=True),
**kwargs)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bilinear',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv', 'classifier': 'head.fc',
**kwargs
}
def _cfgr(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8),
'crop_pct': 0.9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = generate_default_cfgs({
# GPU-Efficient (ResNet) weights
'gernet_s.idstcv_in1k': _cfg(hf_hub_id='timm/'),
'gernet_m.idstcv_in1k': _cfg(hf_hub_id='timm/'),
'gernet_l.idstcv_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)),
# RepVGG weights
'repvgg_a0.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_a1.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_a2.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_b0.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_b1.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_b1g4.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_b2.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_b2g4.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_b3.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_b3g4.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'),
'repvgg_d2se.rvgg_in1k': _cfg(
hf_hub_id='timm/',
first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit',
input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0,
),
# experimental ResNet configs
'resnet51q.ra2_in1k': _cfg(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth',
first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8),
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'resnet61q.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet61q_ra2-6afc536c.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
# ResNeXt-26 models with different attention in Bottleneck blocks
'resnext26ts.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnext26ts_256_ra2-8bbd9106.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'seresnext26ts.ch_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnext26ts_256-6f0d74a3.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'gcresnext26ts.ch_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext26ts_256-e414378b.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'eca_resnext26ts.ch_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnext26ts_256-5a1d030f.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'bat_resnext26ts.ch_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/bat_resnext26ts_256-fa6fd595.pth',
min_input_size=(3, 256, 256)),
# ResNet-32 / 33 models with different attention in Bottleneck blocks
'resnet32ts.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet32ts_256-aacf5250.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'resnet33ts.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet33ts_256-e91b09a4.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'gcresnet33ts.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet33ts_256-0e0cd345.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'seresnet33ts.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnet33ts_256-f8ad44d9.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'eca_resnet33ts.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnet33ts_256-8f98face.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'gcresnet50t.ra2_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet50t_256-96374d1c.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
'gcresnext50ts.ch_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext50ts_256-3e0f515e.pth',
test_input_size=(3, 288, 288), test_crop_pct=1.0),
# custom `timm` specific RegNetZ inspired models w/ different sizing from paper
'regnetz_b16.ra3_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_b_raa-677d9606.pth',
first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.94, test_input_size=(3, 288, 288), test_crop_pct=1.0),
'regnetz_c16.ra3_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_c_rab2_256-a54bf36a.pth',
first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0),
'regnetz_d32.ra3_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d_rab_256-b8073a89.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320)),
'regnetz_d8.ra3_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d8_bh-afc03c55.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0),
'regnetz_e8.ra3_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_e8_bh-aace8e6e.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0),
'regnetz_b16_evos.untrained': _cfgr(
first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.95, test_input_size=(3, 288, 288)),
'regnetz_c16_evos.ch_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_c16_evos_ch-d8311942.pth',
first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
crop_pct=0.95, test_input_size=(3, 320, 320)),
'regnetz_d8_evos.ch_in1k': _cfgr(
hf_hub_id='timm/',
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_d8_evos_ch-2bc12646.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0),
'mobileone_s0.apple_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.875,
first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'),
),
'mobileone_s1.apple_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.9,
first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'),
),
'mobileone_s2.apple_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.9,
first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'),
),
'mobileone_s3.apple_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.9,
first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'),
),
'mobileone_s4.apple_in1k': _cfg(
hf_hub_id='timm/',
crop_pct=0.9,
first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'),
),
})
@register_model
def gernet_l(pretrained=False, **kwargs) -> ByobNet:
""" GEResNet-Large (GENet-Large from official impl)
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
"""
return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs)
@register_model
def gernet_m(pretrained=False, **kwargs) -> ByobNet:
""" GEResNet-Medium (GENet-Normal from official impl)
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
"""
return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs)
@register_model
def gernet_s(pretrained=False, **kwargs) -> ByobNet:
""" EResNet-Small (GENet-Small from official impl)
`Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090
"""
return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs)
@register_model
def repvgg_a0(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-A0
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_a0', pretrained=pretrained, **kwargs)
@register_model
def repvgg_a1(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-A1
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_a1', pretrained=pretrained, **kwargs)
@register_model
def repvgg_a2(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-A2
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs)
@register_model
def repvgg_b0(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-B0
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs)
@register_model
def repvgg_b1(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-B1
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs)
@register_model
def repvgg_b1g4(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-B1g4
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs)
@register_model
def repvgg_b2(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-B2
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs)
@register_model
def repvgg_b2g4(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-B2g4
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs)
@register_model
def repvgg_b3(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-B3
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs)
@register_model
def repvgg_b3g4(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-B3g4
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs)
@register_model
def repvgg_d2se(pretrained=False, **kwargs) -> ByobNet:
""" RepVGG-D2se
`Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697
"""
return _create_byobnet('repvgg_d2se', pretrained=pretrained, **kwargs)
@register_model
def resnet51q(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('resnet51q', pretrained=pretrained, **kwargs)
@register_model
def resnet61q(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('resnet61q', pretrained=pretrained, **kwargs)
@register_model
def resnext26ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('resnext26ts', pretrained=pretrained, **kwargs)
@register_model
def gcresnext26ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs)
@register_model
def seresnext26ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('seresnext26ts', pretrained=pretrained, **kwargs)
@register_model
def eca_resnext26ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('eca_resnext26ts', pretrained=pretrained, **kwargs)
@register_model
def bat_resnext26ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('bat_resnext26ts', pretrained=pretrained, **kwargs)
@register_model
def resnet32ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('resnet32ts', pretrained=pretrained, **kwargs)
@register_model
def resnet33ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('resnet33ts', pretrained=pretrained, **kwargs)
@register_model
def gcresnet33ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('gcresnet33ts', pretrained=pretrained, **kwargs)
@register_model
def seresnet33ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('seresnet33ts', pretrained=pretrained, **kwargs)
@register_model
def eca_resnet33ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('eca_resnet33ts', pretrained=pretrained, **kwargs)
@register_model
def gcresnet50t(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs)
@register_model
def gcresnext50ts(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('gcresnext50ts', pretrained=pretrained, **kwargs)
@register_model
def regnetz_b16(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_b16', pretrained=pretrained, **kwargs)
@register_model
def regnetz_c16(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_c16', pretrained=pretrained, **kwargs)
@register_model
def regnetz_d32(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_d32', pretrained=pretrained, **kwargs)
@register_model
def regnetz_d8(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_d8', pretrained=pretrained, **kwargs)
@register_model
def regnetz_e8(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_e8', pretrained=pretrained, **kwargs)
@register_model
def regnetz_b16_evos(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_b16_evos', pretrained=pretrained, **kwargs)
@register_model
def regnetz_c16_evos(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_c16_evos', pretrained=pretrained, **kwargs)
@register_model
def regnetz_d8_evos(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('regnetz_d8_evos', pretrained=pretrained, **kwargs)
@register_model
def mobileone_s0(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('mobileone_s0', pretrained=pretrained, **kwargs)
@register_model
def mobileone_s1(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('mobileone_s1', pretrained=pretrained, **kwargs)
@register_model
def mobileone_s2(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('mobileone_s2', pretrained=pretrained, **kwargs)
@register_model
def mobileone_s3(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('mobileone_s3', pretrained=pretrained, **kwargs)
@register_model
def mobileone_s4(pretrained=False, **kwargs) -> ByobNet:
"""
"""
return _create_byobnet('mobileone_s4', pretrained=pretrained, **kwargs)
|