File size: 13,593 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
""" PyTorch implementation of DualPathNetworks
Based on original MXNet implementation https://github.com/cypw/DPNs with
many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs.

This implementation is compatible with the pretrained weights from cypw's MXNet implementation.

Hacked together by / Copyright 2020 Ross Wightman
"""
from collections import OrderedDict
from functools import partial
from typing import Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier, get_norm_act_layer
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs

__all__ = ['DPN']


class CatBnAct(nn.Module):
    def __init__(self, in_chs, norm_layer=BatchNormAct2d):
        super(CatBnAct, self).__init__()
        self.bn = norm_layer(in_chs, eps=0.001)

    @torch.jit._overload_method  # noqa: F811
    def forward(self, x):
        # type: (Tuple[torch.Tensor, torch.Tensor]) -> (torch.Tensor)
        pass

    @torch.jit._overload_method  # noqa: F811
    def forward(self, x):
        # type: (torch.Tensor) -> (torch.Tensor)
        pass

    def forward(self, x):
        if isinstance(x, tuple):
            x = torch.cat(x, dim=1)
        return self.bn(x)


class BnActConv2d(nn.Module):
    def __init__(self, in_chs, out_chs, kernel_size, stride, groups=1, norm_layer=BatchNormAct2d):
        super(BnActConv2d, self).__init__()
        self.bn = norm_layer(in_chs, eps=0.001)
        self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, groups=groups)

    def forward(self, x):
        return self.conv(self.bn(x))


class DualPathBlock(nn.Module):
    def __init__(
            self,
            in_chs,
            num_1x1_a,
            num_3x3_b,
            num_1x1_c,
            inc,
            groups,
            block_type='normal',
            b=False,
    ):
        super(DualPathBlock, self).__init__()
        self.num_1x1_c = num_1x1_c
        self.inc = inc
        self.b = b
        if block_type == 'proj':
            self.key_stride = 1
            self.has_proj = True
        elif block_type == 'down':
            self.key_stride = 2
            self.has_proj = True
        else:
            assert block_type == 'normal'
            self.key_stride = 1
            self.has_proj = False

        self.c1x1_w_s1 = None
        self.c1x1_w_s2 = None
        if self.has_proj:
            # Using different member names here to allow easier parameter key matching for conversion
            if self.key_stride == 2:
                self.c1x1_w_s2 = BnActConv2d(
                    in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2)
            else:
                self.c1x1_w_s1 = BnActConv2d(
                    in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1)

        self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1)
        self.c3x3_b = BnActConv2d(
            in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=self.key_stride, groups=groups)
        if b:
            self.c1x1_c = CatBnAct(in_chs=num_3x3_b)
            self.c1x1_c1 = create_conv2d(num_3x3_b, num_1x1_c, kernel_size=1)
            self.c1x1_c2 = create_conv2d(num_3x3_b, inc, kernel_size=1)
        else:
            self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1)
            self.c1x1_c1 = None
            self.c1x1_c2 = None

    @torch.jit._overload_method  # noqa: F811
    def forward(self, x):
        # type: (Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]
        pass

    @torch.jit._overload_method  # noqa: F811
    def forward(self, x):
        # type: (torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]
        pass

    def forward(self, x) -> Tuple[torch.Tensor, torch.Tensor]:
        if isinstance(x, tuple):
            x_in = torch.cat(x, dim=1)
        else:
            x_in = x
        if self.c1x1_w_s1 is None and self.c1x1_w_s2 is None:
            # self.has_proj == False, torchscript requires condition on module == None
            x_s1 = x[0]
            x_s2 = x[1]
        else:
            # self.has_proj == True
            if self.c1x1_w_s1 is not None:
                # self.key_stride = 1
                x_s = self.c1x1_w_s1(x_in)
            else:
                # self.key_stride = 2
                x_s = self.c1x1_w_s2(x_in)
            x_s1 = x_s[:, :self.num_1x1_c, :, :]
            x_s2 = x_s[:, self.num_1x1_c:, :, :]
        x_in = self.c1x1_a(x_in)
        x_in = self.c3x3_b(x_in)
        x_in = self.c1x1_c(x_in)
        if self.c1x1_c1 is not None:
            # self.b == True, using None check for torchscript compat
            out1 = self.c1x1_c1(x_in)
            out2 = self.c1x1_c2(x_in)
        else:
            out1 = x_in[:, :self.num_1x1_c, :, :]
            out2 = x_in[:, self.num_1x1_c:, :, :]
        resid = x_s1 + out1
        dense = torch.cat([x_s2, out2], dim=1)
        return resid, dense


class DPN(nn.Module):
    def __init__(
            self,
            k_sec=(3, 4, 20, 3),
            inc_sec=(16, 32, 24, 128),
            k_r=96,
            groups=32,
            num_classes=1000,
            in_chans=3,
            output_stride=32,
            global_pool='avg',
            small=False,
            num_init_features=64,
            b=False,
            drop_rate=0.,
            norm_layer='batchnorm2d',
            act_layer='relu',
            fc_act_layer='elu',
    ):
        super(DPN, self).__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        self.b = b
        assert output_stride == 32  # FIXME look into dilation support

        norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=act_layer), eps=.001)
        fc_norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=fc_act_layer), eps=.001, inplace=False)
        bw_factor = 1 if small else 4
        blocks = OrderedDict()

        # conv1
        blocks['conv1_1'] = ConvNormAct(
            in_chans, num_init_features, kernel_size=3 if small else 7, stride=2, norm_layer=norm_layer)
        blocks['conv1_pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.feature_info = [dict(num_chs=num_init_features, reduction=2, module='features.conv1_1')]

        # conv2
        bw = 64 * bw_factor
        inc = inc_sec[0]
        r = (k_r * bw) // (64 * bw_factor)
        blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b)
        in_chs = bw + 3 * inc
        for i in range(2, k_sec[0] + 1):
            blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
            in_chs += inc
        self.feature_info += [dict(num_chs=in_chs, reduction=4, module=f'features.conv2_{k_sec[0]}')]

        # conv3
        bw = 128 * bw_factor
        inc = inc_sec[1]
        r = (k_r * bw) // (64 * bw_factor)
        blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
        in_chs = bw + 3 * inc
        for i in range(2, k_sec[1] + 1):
            blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
            in_chs += inc
        self.feature_info += [dict(num_chs=in_chs, reduction=8, module=f'features.conv3_{k_sec[1]}')]

        # conv4
        bw = 256 * bw_factor
        inc = inc_sec[2]
        r = (k_r * bw) // (64 * bw_factor)
        blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
        in_chs = bw + 3 * inc
        for i in range(2, k_sec[2] + 1):
            blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
            in_chs += inc
        self.feature_info += [dict(num_chs=in_chs, reduction=16, module=f'features.conv4_{k_sec[2]}')]

        # conv5
        bw = 512 * bw_factor
        inc = inc_sec[3]
        r = (k_r * bw) // (64 * bw_factor)
        blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b)
        in_chs = bw + 3 * inc
        for i in range(2, k_sec[3] + 1):
            blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b)
            in_chs += inc
        self.feature_info += [dict(num_chs=in_chs, reduction=32, module=f'features.conv5_{k_sec[3]}')]

        blocks['conv5_bn_ac'] = CatBnAct(in_chs, norm_layer=fc_norm_layer)

        self.num_features = in_chs
        self.features = nn.Sequential(blocks)

        # Using 1x1 conv for the FC layer to allow the extra pooling scheme
        self.global_pool, self.classifier = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
        self.flatten = nn.Flatten(1) if global_pool else nn.Identity()

    @torch.jit.ignore
    def group_matcher(self, coarse=False):
        matcher = dict(
            stem=r'^features\.conv1',
            blocks=[
                (r'^features\.conv(\d+)' if coarse else r'^features\.conv(\d+)_(\d+)', None),
                (r'^features\.conv5_bn_ac', (99999,))
            ]
        )
        return matcher

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        assert not enable, 'gradient checkpointing not supported'

    @torch.jit.ignore
    def get_classifier(self):
        return self.classifier

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.global_pool, self.classifier = create_classifier(
            self.num_features, self.num_classes, pool_type=global_pool, use_conv=True)
        self.flatten = nn.Flatten(1) if global_pool else nn.Identity()

    def forward_features(self, x):
        return self.features(x)

    def forward_head(self, x, pre_logits: bool = False):
        x = self.global_pool(x)
        if self.drop_rate > 0.:
            x = F.dropout(x, p=self.drop_rate, training=self.training)
        if pre_logits:
            return self.flatten(x)
        x = self.classifier(x)
        return self.flatten(x)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.forward_head(x)
        return x


def _create_dpn(variant, pretrained=False, **kwargs):
    return build_model_with_cfg(
        DPN,
        variant,
        pretrained,
        feature_cfg=dict(feature_concat=True, flatten_sequential=True),
        **kwargs,
    )


def _cfg(url='', **kwargs):
    return {
        'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bicubic',
        'mean': IMAGENET_DPN_MEAN, 'std': IMAGENET_DPN_STD,
        'first_conv': 'features.conv1_1.conv', 'classifier': 'classifier',
        **kwargs
    }


default_cfgs = generate_default_cfgs({
    'dpn48b.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
    'dpn68.mx_in1k': _cfg(hf_hub_id='timm/'),
    'dpn68b.ra_in1k': _cfg(
        hf_hub_id='timm/',
        mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
        crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0),
    'dpn68b.mx_in1k': _cfg(hf_hub_id='timm/'),
    'dpn92.mx_in1k': _cfg(hf_hub_id='timm/'),
    'dpn98.mx_in1k': _cfg(hf_hub_id='timm/'),
    'dpn131.mx_in1k': _cfg(hf_hub_id='timm/'),
    'dpn107.mx_in1k': _cfg(hf_hub_id='timm/')
})


@register_model
def dpn48b(pretrained=False, **kwargs) -> DPN:
    model_args = dict(
        small=True, num_init_features=10, k_r=128, groups=32,
        b=True, k_sec=(3, 4, 6, 3), inc_sec=(16, 32, 32, 64), act_layer='silu')
    return _create_dpn('dpn48b', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def dpn68(pretrained=False, **kwargs) -> DPN:
    model_args = dict(
        small=True, num_init_features=10, k_r=128, groups=32,
        k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64))
    return _create_dpn('dpn68', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def dpn68b(pretrained=False, **kwargs) -> DPN:
    model_args = dict(
        small=True, num_init_features=10, k_r=128, groups=32,
        b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64))
    return _create_dpn('dpn68b', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def dpn92(pretrained=False, **kwargs) -> DPN:
    model_args = dict(
        num_init_features=64, k_r=96, groups=32,
        k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128))
    return _create_dpn('dpn92', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def dpn98(pretrained=False, **kwargs) -> DPN:
    model_args = dict(
        num_init_features=96, k_r=160, groups=40,
        k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128))
    return _create_dpn('dpn98', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def dpn131(pretrained=False, **kwargs) -> DPN:
    model_args = dict(
        num_init_features=128, k_r=160, groups=40,
        k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128))
    return _create_dpn('dpn131', pretrained=pretrained, **dict(model_args, **kwargs))


@register_model
def dpn107(pretrained=False, **kwargs) -> DPN:
    model_args = dict(
        num_init_features=128, k_r=200, groups=50,
        k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128))
    return _create_dpn('dpn107', pretrained=pretrained, **dict(model_args, **kwargs))