File size: 19,024 Bytes
786f6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
""" EfficientFormer
@article{li2022efficientformer,
title={EfficientFormer: Vision Transformers at MobileNet Speed},
author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov,
Sergey and Wang, Yanzhi and Ren, Jian},
journal={arXiv preprint arXiv:2206.01191},
year={2022}
}
Based on Apache 2.0 licensed code at https://github.com/snap-research/EfficientFormer, Copyright (c) 2022 Snap Inc.
Modifications and timm support by / Copyright 2022, Ross Wightman
"""
from typing import Dict
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, trunc_normal_, to_2tuple, Mlp, ndgrid
from ._builder import build_model_with_cfg
from ._manipulate import checkpoint_seq
from ._registry import generate_default_cfgs, register_model
__all__ = ['EfficientFormer'] # model_registry will add each entrypoint fn to this
EfficientFormer_width = {
'l1': (48, 96, 224, 448),
'l3': (64, 128, 320, 512),
'l7': (96, 192, 384, 768),
}
EfficientFormer_depth = {
'l1': (3, 2, 6, 4),
'l3': (4, 4, 12, 6),
'l7': (6, 6, 18, 8),
}
class Attention(torch.nn.Module):
attention_bias_cache: Dict[str, torch.Tensor]
def __init__(
self,
dim=384,
key_dim=32,
num_heads=8,
attn_ratio=4,
resolution=7
):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.key_attn_dim = key_dim * num_heads
self.val_dim = int(attn_ratio * key_dim)
self.val_attn_dim = self.val_dim * num_heads
self.attn_ratio = attn_ratio
self.qkv = nn.Linear(dim, self.key_attn_dim * 2 + self.val_attn_dim)
self.proj = nn.Linear(self.val_attn_dim, dim)
resolution = to_2tuple(resolution)
pos = torch.stack(ndgrid(torch.arange(resolution[0]), torch.arange(resolution[1]))).flatten(1)
rel_pos = (pos[..., :, None] - pos[..., None, :]).abs()
rel_pos = (rel_pos[0] * resolution[1]) + rel_pos[1]
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, resolution[0] * resolution[1]))
self.register_buffer('attention_bias_idxs', rel_pos)
self.attention_bias_cache = {} # per-device attention_biases cache (data-parallel compat)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.attention_bias_cache:
self.attention_bias_cache = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if torch.jit.is_tracing() or self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.attention_bias_cache:
self.attention_bias_cache[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.attention_bias_cache[device_key]
def forward(self, x): # x (B,N,C)
B, N, C = x.shape
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
q, k, v = qkv.split([self.key_dim, self.key_dim, self.val_dim], dim=3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.val_attn_dim)
x = self.proj(x)
return x
class Stem4(nn.Sequential):
def __init__(self, in_chs, out_chs, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d):
super().__init__()
self.stride = 4
self.add_module('conv1', nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1))
self.add_module('norm1', norm_layer(out_chs // 2))
self.add_module('act1', act_layer())
self.add_module('conv2', nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1))
self.add_module('norm2', norm_layer(out_chs))
self.add_module('act2', act_layer())
class Downsample(nn.Module):
"""
Downsampling via strided conv w/ norm
Input: tensor in shape [B, C, H, W]
Output: tensor in shape [B, C, H/stride, W/stride]
"""
def __init__(self, in_chs, out_chs, kernel_size=3, stride=2, padding=None, norm_layer=nn.BatchNorm2d):
super().__init__()
if padding is None:
padding = kernel_size // 2
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, padding=padding)
self.norm = norm_layer(out_chs)
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
return x
class Flat(nn.Module):
def __init__(self, ):
super().__init__()
def forward(self, x):
x = x.flatten(2).transpose(1, 2)
return x
class Pooling(nn.Module):
"""
Implementation of pooling for PoolFormer
--pool_size: pooling size
"""
def __init__(self, pool_size=3):
super().__init__()
self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False)
def forward(self, x):
return self.pool(x) - x
class ConvMlpWithNorm(nn.Module):
"""
Implementation of MLP with 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
drop=0.
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.norm1 = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.norm2 = norm_layer(out_features) if norm_layer is not None else nn.Identity()
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.norm1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.norm2(x)
x = self.drop(x)
return x
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class MetaBlock1d(nn.Module):
def __init__(
self,
dim,
mlp_ratio=4.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
proj_drop=0.,
drop_path=0.,
layer_scale_init_value=1e-5
):
super().__init__()
self.norm1 = norm_layer(dim)
self.token_mixer = Attention(dim)
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=proj_drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.ls1 = LayerScale(dim, layer_scale_init_value)
self.ls2 = LayerScale(dim, layer_scale_init_value)
def forward(self, x):
x = x + self.drop_path(self.ls1(self.token_mixer(self.norm1(x))))
x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x))))
return x
class LayerScale2d(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
gamma = self.gamma.view(1, -1, 1, 1)
return x.mul_(gamma) if self.inplace else x * gamma
class MetaBlock2d(nn.Module):
def __init__(
self,
dim,
pool_size=3,
mlp_ratio=4.,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
proj_drop=0.,
drop_path=0.,
layer_scale_init_value=1e-5
):
super().__init__()
self.token_mixer = Pooling(pool_size=pool_size)
self.ls1 = LayerScale2d(dim, layer_scale_init_value)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.mlp = ConvMlpWithNorm(
dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
norm_layer=norm_layer,
drop=proj_drop,
)
self.ls2 = LayerScale2d(dim, layer_scale_init_value)
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path1(self.ls1(self.token_mixer(x)))
x = x + self.drop_path2(self.ls2(self.mlp(x)))
return x
class EfficientFormerStage(nn.Module):
def __init__(
self,
dim,
dim_out,
depth,
downsample=True,
num_vit=1,
pool_size=3,
mlp_ratio=4.,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
norm_layer_cl=nn.LayerNorm,
proj_drop=.0,
drop_path=0.,
layer_scale_init_value=1e-5,
):
super().__init__()
self.grad_checkpointing = False
if downsample:
self.downsample = Downsample(in_chs=dim, out_chs=dim_out, norm_layer=norm_layer)
dim = dim_out
else:
assert dim == dim_out
self.downsample = nn.Identity()
blocks = []
if num_vit and num_vit >= depth:
blocks.append(Flat())
for block_idx in range(depth):
remain_idx = depth - block_idx - 1
if num_vit and num_vit > remain_idx:
blocks.append(
MetaBlock1d(
dim,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
norm_layer=norm_layer_cl,
proj_drop=proj_drop,
drop_path=drop_path[block_idx],
layer_scale_init_value=layer_scale_init_value,
))
else:
blocks.append(
MetaBlock2d(
dim,
pool_size=pool_size,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
norm_layer=norm_layer,
proj_drop=proj_drop,
drop_path=drop_path[block_idx],
layer_scale_init_value=layer_scale_init_value,
))
if num_vit and num_vit == remain_idx:
blocks.append(Flat())
self.blocks = nn.Sequential(*blocks)
def forward(self, x):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class EfficientFormer(nn.Module):
def __init__(
self,
depths,
embed_dims=None,
in_chans=3,
num_classes=1000,
global_pool='avg',
downsamples=None,
num_vit=0,
mlp_ratios=4,
pool_size=3,
layer_scale_init_value=1e-5,
act_layer=nn.GELU,
norm_layer=nn.BatchNorm2d,
norm_layer_cl=nn.LayerNorm,
drop_rate=0.,
proj_drop_rate=0.,
drop_path_rate=0.,
**kwargs
):
super().__init__()
self.num_classes = num_classes
self.global_pool = global_pool
self.stem = Stem4(in_chans, embed_dims[0], norm_layer=norm_layer)
prev_dim = embed_dims[0]
# stochastic depth decay rule
dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
downsamples = downsamples or (False,) + (True,) * (len(depths) - 1)
stages = []
for i in range(len(depths)):
stage = EfficientFormerStage(
prev_dim,
embed_dims[i],
depths[i],
downsample=downsamples[i],
num_vit=num_vit if i == 3 else 0,
pool_size=pool_size,
mlp_ratio=mlp_ratios,
act_layer=act_layer,
norm_layer_cl=norm_layer_cl,
norm_layer=norm_layer,
proj_drop=proj_drop_rate,
drop_path=dpr[i],
layer_scale_init_value=layer_scale_init_value,
)
prev_dim = embed_dims[i]
stages.append(stage)
self.stages = nn.Sequential(*stages)
# Classifier head
self.num_features = embed_dims[-1]
self.norm = norm_layer_cl(self.num_features)
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# assuming model is always distilled (valid for current checkpoints, will split def if that changes)
self.head_dist = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
self.distilled_training = False # must set this True to train w/ distillation token
self.apply(self._init_weights)
# init for classification
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {k for k, _ in self.named_parameters() if 'attention_biases' in k}
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem=r'^stem', # stem and embed
blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))]
)
return matcher
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self):
return self.head, self.head_dist
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
@torch.jit.ignore
def set_distilled_training(self, enable=True):
self.distilled_training = enable
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
x = self.norm(x)
return x
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool == 'avg':
x = x.mean(dim=1)
x = self.head_drop(x)
if pre_logits:
return x
x, x_dist = self.head(x), self.head_dist(x)
if self.distilled_training and self.training and not torch.jit.is_scripting():
# only return separate classification predictions when training in distilled mode
return x, x_dist
else:
# during standard train/finetune, inference average the classifier predictions
return (x + x_dist) / 2
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _checkpoint_filter_fn(state_dict, model):
""" Remap original checkpoints -> timm """
if 'stem.0.weight' in state_dict:
return state_dict # non-original checkpoint, no remapping needed
out_dict = {}
import re
stage_idx = 0
for k, v in state_dict.items():
if k.startswith('patch_embed'):
k = k.replace('patch_embed.0', 'stem.conv1')
k = k.replace('patch_embed.1', 'stem.norm1')
k = k.replace('patch_embed.3', 'stem.conv2')
k = k.replace('patch_embed.4', 'stem.norm2')
if re.match(r'network\.(\d+)\.proj\.weight', k):
stage_idx += 1
k = re.sub(r'network.(\d+).(\d+)', f'stages.{stage_idx}.blocks.\\2', k)
k = re.sub(r'network.(\d+).proj', f'stages.{stage_idx}.downsample.conv', k)
k = re.sub(r'network.(\d+).norm', f'stages.{stage_idx}.downsample.norm', k)
k = re.sub(r'layer_scale_([0-9])', r'ls\1.gamma', k)
k = k.replace('dist_head', 'head_dist')
out_dict[k] = v
return out_dict
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'fixed_input_size': True,
'crop_pct': .95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv1', 'classifier': ('head', 'head_dist'),
**kwargs
}
default_cfgs = generate_default_cfgs({
'efficientformer_l1.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'efficientformer_l3.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
'efficientformer_l7.snap_dist_in1k': _cfg(
hf_hub_id='timm/',
),
})
def _create_efficientformer(variant, pretrained=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for EfficientFormer models.')
model = build_model_with_cfg(
EfficientFormer, variant, pretrained,
pretrained_filter_fn=_checkpoint_filter_fn,
**kwargs)
return model
@register_model
def efficientformer_l1(pretrained=False, **kwargs) -> EfficientFormer:
model_args = dict(
depths=EfficientFormer_depth['l1'],
embed_dims=EfficientFormer_width['l1'],
num_vit=1,
)
return _create_efficientformer('efficientformer_l1', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientformer_l3(pretrained=False, **kwargs) -> EfficientFormer:
model_args = dict(
depths=EfficientFormer_depth['l3'],
embed_dims=EfficientFormer_width['l3'],
num_vit=4,
)
return _create_efficientformer('efficientformer_l3', pretrained=pretrained, **dict(model_args, **kwargs))
@register_model
def efficientformer_l7(pretrained=False, **kwargs) -> EfficientFormer:
model_args = dict(
depths=EfficientFormer_depth['l7'],
embed_dims=EfficientFormer_width['l7'],
num_vit=8,
)
return _create_efficientformer('efficientformer_l7', pretrained=pretrained, **dict(model_args, **kwargs))
|