File size: 7,459 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
""" Adafactor Optimizer

Lifted from https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py

Original header/copyright below.

"""
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import math


class Adafactor(torch.optim.Optimizer):
    """Implements Adafactor algorithm.
    This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
    (see https://arxiv.org/abs/1804.04235)

    Note that this optimizer internally adjusts the learning rate depending on the
    *scale_parameter*, *relative_step* and *warmup_init* options.

    To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
    `relative_step=False`.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining parameter groups
        lr (float, optional): external learning rate (default: None)
        eps (tuple[float, float]): regularization constants for square gradient
            and parameter scale respectively (default: (1e-30, 1e-3))
        clip_threshold (float): threshold of root mean square of final gradient update (default: 1.0)
        decay_rate (float): coefficient used to compute running averages of square gradient (default: -0.8)
        beta1 (float): coefficient used for computing running averages of gradient (default: None)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        scale_parameter (bool): if True, learning rate is scaled by root mean square of parameter (default: True)
        warmup_init (bool): time-dependent learning rate computation depends on
            whether warm-up initialization is being used (default: False)
    """

    def __init__(self, params, lr=None, eps=1e-30, eps_scale=1e-3, clip_threshold=1.0,
                 decay_rate=-0.8, betas=None, weight_decay=0.0, scale_parameter=True, warmup_init=False):
        relative_step = not lr
        if warmup_init and not relative_step:
            raise ValueError('warmup_init requires relative_step=True')

        beta1 = None if betas is None else betas[0]   # make it compat with standard betas arg
        defaults = dict(lr=lr, eps=eps, eps_scale=eps_scale, clip_threshold=clip_threshold, decay_rate=decay_rate,
                        beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter,
                        relative_step=relative_step, warmup_init=warmup_init)
        super(Adafactor, self).__init__(params, defaults)

    @staticmethod
    def _get_lr(param_group, param_state):
        if param_group['relative_step']:
            min_step = 1e-6 * param_state['step'] if param_group['warmup_init'] else 1e-2
            lr_t = min(min_step, 1.0 / math.sqrt(param_state['step']))
            param_scale = 1.0
            if param_group['scale_parameter']:
                param_scale = max(param_group['eps_scale'], param_state['RMS'])
            param_group['lr'] = lr_t * param_scale
        return param_group['lr']

    @staticmethod
    def _get_options(param_group, param_shape):
        factored = len(param_shape) >= 2
        use_first_moment = param_group['beta1'] is not None
        return factored, use_first_moment

    @staticmethod
    def _rms(tensor):
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
        r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        return torch.mul(r_factor, c_factor)

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.
        Arguments:
            closure (callable, optional): A closure that reevaluates the model and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad
                if grad.dtype in {torch.float16, torch.bfloat16}:
                    grad = grad.float()
                if grad.is_sparse:
                    raise RuntimeError('Adafactor does not support sparse gradients.')

                state = self.state[p]

                factored, use_first_moment = self._get_options(group, grad.shape)
                # State Initialization
                if len(state) == 0:
                    state['step'] = 0

                    if use_first_moment:
                        # Exponential moving average of gradient values
                        state['exp_avg'] = torch.zeros_like(grad)
                    if factored:
                        state['exp_avg_sq_row'] = torch.zeros(grad.shape[:-1]).to(grad)
                        state['exp_avg_sq_col'] = torch.zeros(grad.shape[:-2] + grad.shape[-1:]).to(grad)
                    else:
                        state['exp_avg_sq'] = torch.zeros_like(grad)

                    state['RMS'] = 0
                else:
                    if use_first_moment:
                        state['exp_avg'] = state['exp_avg'].to(grad)
                    if factored:
                        state['exp_avg_sq_row'] = state['exp_avg_sq_row'].to(grad)
                        state['exp_avg_sq_col'] = state['exp_avg_sq_col'].to(grad)
                    else:
                        state['exp_avg_sq'] = state['exp_avg_sq'].to(grad)

                p_fp32 = p
                if p.dtype in {torch.float16, torch.bfloat16}:
                    p_fp32 = p_fp32.float()

                state['step'] += 1
                state['RMS'] = self._rms(p_fp32)
                lr_t = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state['step'], group['decay_rate'])
                update = grad ** 2 + group['eps']
                if factored:
                    exp_avg_sq_row = state['exp_avg_sq_row']
                    exp_avg_sq_col = state['exp_avg_sq_col']

                    exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=1.0 - beta2t)
                    exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=1.0 - beta2t)

                    # Approximation of exponential moving average of square of gradient
                    update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
                    update.mul_(grad)
                else:
                    exp_avg_sq = state['exp_avg_sq']

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
                    update = exp_avg_sq.rsqrt().mul_(grad)

                update.div_((self._rms(update) / group['clip_threshold']).clamp_(min=1.0))
                update.mul_(lr_t)

                if use_first_moment:
                    exp_avg = state['exp_avg']
                    exp_avg.mul_(group['beta1']).add_(update, alpha=1 - group['beta1'])
                    update = exp_avg

                if group['weight_decay'] != 0:
                    p_fp32.add_(p_fp32, alpha=-group['weight_decay'] * lr_t)

                p_fp32.add_(-update)
                if p.dtype in {torch.float16, torch.bfloat16}:
                    p.copy_(p_fp32)

        return loss