File size: 18,363 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import sys
sys.path.insert(0, './pytorch-image-models-main')

#######################################
from moe import Moe,all_loss
#######################################

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7"#0,1,2,3

import torch
import cv2
from albumentations.pytorch import ToTensorV2
from albumentations import (
    HorizontalFlip, VerticalFlip,  ShiftScaleRotate, CLAHE, RandomRotate90,
    Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue,
     GaussNoise, MotionBlur, MedianBlur, PiecewiseAffine, RandomResizedCrop,
     RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, CoarseDropout,
    ShiftScaleRotate, CenterCrop, Resize, SmallestMaxSize
)
import time
# import timm
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader
from torch.optim import Adam, SGD, AdamW, RMSprop
from torch import nn
import random
from tqdm import tqdm
from PIL import Image
import numpy as np
import logging
from sklearn.model_selection import GroupKFold, StratifiedKFold
import pandas as pd
import math

CFG = {
    'seed': 42,  # 719,42,68
    'model_arch': 'convnext_large_mlp',#

    #convnextv2_base.fcmae_ft_in22k_in1k_384

    'patch': 16,
    
    'mean':[0.485, 0.456, 0.406] ,
    'std':[0.229, 0.224, 0.225],


    'mix_type': 'cutmix', # cutmix, mixup, tokenmix, randommix, none
    'mix_prob': 0.7,

    'img_size': 512,#512

    'class_num': 1784,

    'warmup_epochs': 1,
    'warmup_lr_factor': 0.01,   # warmup_lr = lr * warmup_lr_factor
    'epochs': 11,
# convlarge v2 epoch11  不用alpha
    'train_bs': 24,
    'valid_bs': 64,

    'lr': 7.5e-5,#7.5e-5
    'min_lr': 1e-5,#1e-6

    'differLR': False,
    # 'bacbone_lr_factor': 0.2,    # if 'differLR' is True, the lr of backbone will be lr * bacbone_lr_factor
    'head_lr': 0,#used when differ
    'head_wd': 0.05,
    'num_workers': 8,
    'device': 'cuda',
    'smoothing': 0.1,  # label smoothing

    'weight_decay': 2e-5,
    'accum_iter': 1,    # suppoprt to do batch accumulation for backprop with effectively larger batch size
    'verbose_step': 1,  # the step of printing loss
    
}

logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler(f"logs/{CFG['model_arch']}_train_moe.log")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)


def seed_everything(seed):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = True


def get_img(path):
    # print(path)
    im_bgr = cv2.imread(path)
    im_rgb = im_bgr[:, :, ::-1]
    return im_rgb


train_data_root = '/data1/dataset/SnakeCLEF2024/'
val_data_root = '/data1/dataset/SnakeCLEF2023/val/SnakeCLEF2023-large_size/'
train_df = pd.read_csv('./metadata/train_full.csv')

valid_df = pd.read_csv('./metadata/SnakeCLEF2023-ValMetadata.csv')
is_venomous_df = pd.read_csv('./metadata/venomous_status_list.csv')
class_id2venomous ={}
venomous_mask = torch.ones(CFG['class_num'])
for class_id,is_venomous in zip(is_venomous_df['class_id'],is_venomous_df['MIVS']):
    venomous_mask[class_id]=is_venomous
    if class_id not in class_id2venomous.keys():
        class_id2venomous[class_id] = is_venomous
train_df['MIVS'] = train_df['class_id'].map(class_id2venomous)
valid_df['MIVS'] = valid_df['class_id'].map(class_id2venomous)

class FGVCDataset(Dataset):
    def __init__(self, df, data_root,
                 transforms=None,
                 output_label=True,
                 one_hot_label=False
                 ):

        super().__init__()
        self.df = df.reset_index(drop=True).copy()
        self.transforms = transforms
        self.data_root = data_root

        self.output_label = output_label
        self.one_hot_label = one_hot_label

        if output_label == True:
            self.labels = self.df['class_id'].values
            self.is_venomous = self.df['MIVS']
            if one_hot_label is True:
                self.labels = np.eye(self.df['class_id'].max() + 1)[self.labels]

    def __len__(self):
        return self.df.shape[0]

    def __getitem__(self, index: int):
        # get labels
        if self.output_label:
            target = self.labels[index]
            venomous = self.is_venomous[index]

        image_path = self.data_root + self.df.loc[index]['image_path']


        img = get_img(image_path)

        if self.transforms:
            img = self.transforms(image=img)['image']

        if self.output_label == True:
            return img, target,venomous
        else:
            return img


def get_train_transforms():
    return Compose([
        RandomResizedCrop(CFG['img_size'], CFG['img_size'],
                          interpolation=cv2.INTER_CUBIC, scale=(0.5, 1.3)),
        Transpose(p=0.5),
        HorizontalFlip(p=0.5),
        VerticalFlip(p=0.5),
        ShiftScaleRotate(p=0.3),
        PiecewiseAffine(p=0.5),
        RandomBrightnessContrast(
            brightness_limit=(-0.2, 0.2), contrast_limit=(-0.2, 0.2), p=1.0),
        OneOf([
            OpticalDistortion(distort_limit=1.0),
            GridDistortion(num_steps=5, distort_limit=1.),

        ], p=0.5),

        Normalize(mean=CFG['mean'], std=CFG['std'],
                  max_pixel_value=255.0, p=1.0),
        ToTensorV2(p=1.0),
    ], p=1.)



def get_valid_transforms():
    return Compose([
        # SmallestMaxSize(CFG['img_size']),
        Resize(CFG['img_size'], CFG['img_size'],
               interpolation=cv2.INTER_CUBIC),
        # CenterCrop(CFG['img_size'], CFG['img_size']),
        Normalize(mean=CFG['mean'], std=CFG['std'],
                  max_pixel_value=255.0, p=1.0),
        ToTensorV2(p=1.0),
    ], p=1.)


def prepare_dataloader(train_df, val_df, train_idx, val_idx):
    train_ = train_df.loc[train_idx, :].reset_index(drop=True)
    valid_ = val_df.loc[val_idx, :].reset_index(drop=True)

    train_ds = FGVCDataset(train_, train_data_root, transforms=get_train_transforms())
    valid_ds = FGVCDataset(valid_, val_data_root, transforms=get_valid_transforms())

    train_loader = torch.utils.data.DataLoader(
        train_ds,
        batch_size=CFG['train_bs'],
        pin_memory=False,
        drop_last=False,
        shuffle=True,
        num_workers=CFG['num_workers']
    )
    val_loader = torch.utils.data.DataLoader(
        valid_ds,
        batch_size=CFG['valid_bs'],
        num_workers=CFG['num_workers'],
        shuffle=False,
        pin_memory=False,
    )
    return train_loader, val_loader

def rand_bbox(size, lam):
    W = size[2]
    H = size[3]
    cut_rat = np.sqrt(1. - lam)
    cut_w = np.int32(W * cut_rat)
    cut_h = np.int32(H * cut_rat)

    # uniform
    cx = np.random.randint(W)
    cy = np.random.randint(H)

    bbx1 = np.clip(cx - cut_w // 2, 0, W)
    bby1 = np.clip(cy - cut_h // 2, 0, H)
    bbx2 = np.clip(cx + cut_w // 2, 0, W)
    bby2 = np.clip(cy + cut_h // 2, 0, H)

    return bbx1, bby1, bbx2, bby2


def generate_mask_random(imgs, patch=CFG['patch'], mask_token_num_start=14, lam=0.5):
    _, _, W, H = imgs.shape
    assert W % patch == 0
    assert H % patch == 0
    p = W // patch

    mask_ratio = 1 - lam
    num_masking_patches = min(p**2, int(mask_ratio * (p**2)) + mask_token_num_start)
    mask_idx = np.random.permutation(p**2)[:num_masking_patches]
    lam = 1 - num_masking_patches / (p**2)
    return mask_idx, lam


def get_mixed_data(imgs, image_labels, is_venomous,mix_type):
    mix_lst = ['cutmix', 'tokenmix', 'mixup',  'randommix']
    assert mix_type in mix_lst, f'Not Supported mix type: {mix_type}'
    if mix_type == 'randommix':
        # select a mix_type randomly
        mix_type = random.choice(mix_lst[:-2])

    if mix_type == 'mixup':
        alpha = 2.0
        rand_index = torch.randperm(imgs.size()[0]).cuda()
        target_a = image_labels
        target_b = image_labels[rand_index]
        lam = np.random.beta(alpha, alpha)
        imgs = imgs * lam + imgs[rand_index] * (1 - lam)
    elif mix_type == 'cutmix':
        beta = 1.0
        lam = np.random.beta(beta, beta)
        rand_index = torch.randperm(imgs.size()[0]).cuda()
        target_a = image_labels
        target_b = image_labels[rand_index]
        is_venomous_a = is_venomous
        is_venomous_b = is_venomous[rand_index]
        bbx1, bby1, bbx2, bby2 = rand_bbox(imgs.size(), lam)
        imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[rand_index, :, bbx1:bbx2, bby1:bby2]
        # adjust lambda to exactly match pixel ratio
        lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (imgs.size()[-1] * imgs.size()[-2]))
    elif mix_type == 'tokenmix':
        B, C, W, H = imgs.shape
        mask_idx, lam = generate_mask_random(imgs)
        rand_index = torch.randperm(imgs.size()[0]).cuda()
        p = W // CFG['patch']
        patch_w = CFG['patch']
        patch_h = CFG['patch']
        for idx in mask_idx:
            row_s = idx // p
            col_s = idx % p
            x1 = patch_w * row_s
            x2 = x1 + patch_w
            y1 = patch_h * col_s
            y2 = y1 + patch_h
            imgs[:, :, x1:x2, y1:y2] = imgs[rand_index, :, x1:x2, y1:y2]

        target_a = image_labels
        target_b = image_labels[rand_index]

    return imgs, target_a, target_b, is_venomous_a,is_venomous_b,lam


def train_one_epoch_mix(epoch, model, loss_fn, optimizer, train_loader, device, scheduler=None, schd_batch_update=False, mix_type=CFG['mix_type']):
    model.train()

    running_loss = None
    image_preds_all = []
    image_targets_all = []

    pbar = tqdm(enumerate(train_loader), total=len(train_loader),ncols=70)
    for step, (imgs, image_labels,is_venomous) in pbar:
        imgs = imgs.to(device).float()
        image_labels = image_labels.to(device).long()
        is_venomous = is_venomous.to(device).float()#.long()
       
        if np.random.rand(1) < CFG['mix_prob']:
            imgs, target_a, target_b,is_venomous_a,is_venomous_b ,lam = get_mixed_data(imgs, image_labels, is_venomous,mix_type)
            with autocast():
                # image_preds = model(imgs)
                # loss = loss_fn(image_preds, target_a) * lam + loss_fn(image_preds, target_b) * (1. - lam)
                
                y_hat,expert_pred,alpha,image_preds = model(imgs)
                loss = loss_fn(y_hat,expert_pred,alpha,image_preds,target_a,is_venomous_a)*lam+loss_fn(y_hat,expert_pred,alpha,image_preds,target_b,is_venomous_b)*(1.0-lam)
                scaler.scale(loss).backward()
        else:
            with autocast():
                y_hat,expert_pred,alpha,image_preds = model(imgs)
                loss = loss_fn(y_hat,expert_pred,alpha,image_preds,image_labels,is_venomous)
                scaler.scale(loss).backward()
        image_preds_all += [torch.argmax(image_preds, 1).detach().cpu().numpy()]
        image_targets_all += [image_labels.detach().cpu().numpy()]
        if running_loss is None:
            running_loss = loss.item()
        else:
            running_loss = running_loss * .99 + loss.item() * .01
        # if running_loss >10:
        #     print(epoch)
        if ((step + 1) % CFG['accum_iter'] == 0) or ((step + 1) == len(train_loader)):
            # may unscale_ here if desired (e.g., to allow clipping unscaled gradients)
            # torch.nn.utils.clip_grad_norm_(model.parameters(), 1e-8)    
            scaler.step(optimizer)
            scaler.update()
            optimizer.zero_grad()

            if scheduler is not None and schd_batch_update:
                scheduler.step()

        if ((step + 1) % CFG['verbose_step'] == 0) or ((step + 1) == len(train_loader)):
            description = f'epoch {epoch} loss: {running_loss:.4f}'
            pbar.set_description(description)

    image_preds_all = np.concatenate(image_preds_all)
    image_targets_all = np.concatenate(image_targets_all)
    accuracy = (image_preds_all == image_targets_all).mean()

    print('Train multi-class accuracy = {:.4f}'.format(accuracy))
    logger.info(' Epoch: ' + str(epoch) + ' Train multi-class accuracy = {:.4f}'.format(accuracy))
    logger.info(' Epoch: ' + str(epoch) + ' Train loss = {:.4f}'.format(running_loss))

    if scheduler is not None and not schd_batch_update:
        scheduler.step()


def valid_one_epoch(epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False):
    model.eval()

    loss_sum = 0
    sample_num = 0
    image_preds_all = []
    image_targets_all = []

    pbar = tqdm(enumerate(val_loader), total=len(val_loader),ncols=70)
    for step, (imgs, image_labels,is_venomous) in pbar:
        imgs = imgs.to(device).float()
        image_labels = image_labels.to(device).long()
        is_venomous = is_venomous.to(device).float()#.long()
        # image_preds = model(imgs)
        y_hat,expert_pred,alpha,image_preds = model(imgs)
        image_preds_all += [torch.argmax(image_preds, 1).detach().cpu().numpy()]
        image_targets_all += [image_labels.detach().cpu().numpy()]
        # if openset, transform labels to calculate loss without reporting errors
        openset_idx = image_labels == -1
        image_labels[openset_idx] = 0   # just assign class_id: 0
        loss = loss_fn(image_preds, image_labels)

        loss_sum += loss.item() * image_labels.shape[0]
        sample_num += image_labels.shape[0]

        if ((step + 1) % CFG['verbose_step'] == 0) or ((step + 1) == len(val_loader)):
            description = f'epoch {epoch} loss: {loss_sum / sample_num:.4f}'
            pbar.set_description(description)

    image_preds_all = np.concatenate(image_preds_all)
    image_targets_all = np.concatenate(image_targets_all)

    accuracy = (image_preds_all == image_targets_all).mean()
    print('validation multi-class accuracy = {:.4f}'.format(accuracy))
    logger.info(' Epoch: ' + str(epoch) + ' validation multi-class accuracy = {:.4f}'.format(accuracy))

    if scheduler is not None:
        if schd_loss_update:
            scheduler.step(loss_sum / sample_num)
        else:
            scheduler.step()
    return accuracy



if __name__ == '__main__':
    # time.sleep(150 * 60)
    seed_everything(CFG['seed'])
    logger.info(CFG)

    trn_idx = np.arange(train_df.shape[0])
    val_idx = np.arange(valid_df.shape[0])

    df_class_id = np.array(train_df['class_id'])
    class_counts = np.bincount(df_class_id)
    device = torch.device(CFG['device'])

    
    model = Moe(CFG['model_arch'],CFG['class_num'],venomous_mask)
    model = nn.DataParallel(model)
    model.to(device)
    model.module.not_venomous_mask.to(device)
    model.module.venomous_mask.to(device)
    

    train_loader, val_loader = prepare_dataloader(train_df, valid_df, trn_idx, val_idx)

    scaler = GradScaler()


    if CFG['differLR']:
        backbone_params = list(map(id, model.module.backbone.parameters()))
        head_params = filter(lambda p: id(p) not in backbone_params, model.parameters())
    
        if  CFG['head_lr']>0:
            lr_cfg = [ {'params': model.module.backbone.parameters(), 'lr': CFG['lr'] ,'weight_decay':CFG['weight_decay']},
                {'params': head_params , 'lr': CFG['head_lr'],'weight_decay':CFG['head_wd']}]
            optimizer = torch.optim.AdamW(lr_cfg, lr=CFG['lr'], weight_decay=CFG['weight_decay'])
        else:
            # lr_cfg = [ {'params': model.module.backbone.parameters(), 'lr': CFG['lr'] ,'weight_decay':CFG['weight_decay']}]
            print('frozen center')
            # for param in model.module.center.parameters():
            model.module.center.requires_grad = False
            lr_cfg = [
            {'params': model.module.backbone.parameters(), 'lr': CFG['lr'], 'weight_decay': CFG['weight_decay']}]
            # head_params = {name: param for name, param in named_parameters if id(param) not in backbone_params}
            optimizer = torch.optim.AdamW(lr_cfg, lr=CFG['lr'], weight_decay=CFG['weight_decay'])


    else:
        optimizer = torch.optim.AdamW(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay'])


    main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        optimizer, T_max=CFG['epochs'] - CFG['warmup_epochs'], eta_min=CFG['min_lr']
    )
    warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
        optimizer, start_factor=CFG['warmup_lr_factor'], total_iters=CFG['warmup_epochs']
    )
    scheduler = torch.optim.lr_scheduler.SequentialLR(
        optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[CFG['warmup_epochs']]
    )


    loss_tr = all_loss(class_counts,CFG['class_num']).to(device)

    loss_fn = nn.CrossEntropyLoss(label_smoothing=CFG['smoothing']).to(device)

    best_acc = 0.0
    for epoch in range(CFG['epochs']):
        print(optimizer.param_groups[0]['lr'])
        train_one_epoch_mix(epoch, model, loss_tr, optimizer, train_loader, device, scheduler=scheduler)
        temp_acc = 0.0
        with torch.no_grad():
            temp_acc = valid_one_epoch(epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False)
            if temp_acc > best_acc:
                torch.save(model.state_dict(), './checkpoints_moe/moe_{}_mix_{}_mixprob_{}_seed_{}_ls_{}_epochs_{}_differLR_{}_imsize{}.pth'.format(
                                                CFG['model_arch'],
                                                CFG['mix_type'],
                                                CFG['mix_prob'],
                                                CFG['seed'],
                                                CFG['smoothing'],
                                                CFG['epochs'],
                                                CFG['differLR'],
                                                CFG['img_size']))
        if temp_acc > best_acc:
            best_acc = temp_acc

    del model, optimizer, train_loader, val_loader, scaler, scheduler
    print(best_acc)
    logger.info('BEST-Valid-ACC: ' + str(best_acc))
    torch.cuda.empty_cache()