File size: 18,363 Bytes
786f6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import sys
sys.path.insert(0, './pytorch-image-models-main')
#######################################
from moe import Moe,all_loss
#######################################
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7"#0,1,2,3
import torch
import cv2
from albumentations.pytorch import ToTensorV2
from albumentations import (
HorizontalFlip, VerticalFlip, ShiftScaleRotate, CLAHE, RandomRotate90,
Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue,
GaussNoise, MotionBlur, MedianBlur, PiecewiseAffine, RandomResizedCrop,
RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, CoarseDropout,
ShiftScaleRotate, CenterCrop, Resize, SmallestMaxSize
)
import time
# import timm
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader
from torch.optim import Adam, SGD, AdamW, RMSprop
from torch import nn
import random
from tqdm import tqdm
from PIL import Image
import numpy as np
import logging
from sklearn.model_selection import GroupKFold, StratifiedKFold
import pandas as pd
import math
CFG = {
'seed': 42, # 719,42,68
'model_arch': 'convnext_large_mlp',#
#convnextv2_base.fcmae_ft_in22k_in1k_384
'patch': 16,
'mean':[0.485, 0.456, 0.406] ,
'std':[0.229, 0.224, 0.225],
'mix_type': 'cutmix', # cutmix, mixup, tokenmix, randommix, none
'mix_prob': 0.7,
'img_size': 512,#512
'class_num': 1784,
'warmup_epochs': 1,
'warmup_lr_factor': 0.01, # warmup_lr = lr * warmup_lr_factor
'epochs': 11,
# convlarge v2 epoch11 不用alpha
'train_bs': 24,
'valid_bs': 64,
'lr': 7.5e-5,#7.5e-5
'min_lr': 1e-5,#1e-6
'differLR': False,
# 'bacbone_lr_factor': 0.2, # if 'differLR' is True, the lr of backbone will be lr * bacbone_lr_factor
'head_lr': 0,#used when differ
'head_wd': 0.05,
'num_workers': 8,
'device': 'cuda',
'smoothing': 0.1, # label smoothing
'weight_decay': 2e-5,
'accum_iter': 1, # suppoprt to do batch accumulation for backprop with effectively larger batch size
'verbose_step': 1, # the step of printing loss
}
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler(f"logs/{CFG['model_arch']}_train_moe.log")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def get_img(path):
# print(path)
im_bgr = cv2.imread(path)
im_rgb = im_bgr[:, :, ::-1]
return im_rgb
train_data_root = '/data1/dataset/SnakeCLEF2024/'
val_data_root = '/data1/dataset/SnakeCLEF2023/val/SnakeCLEF2023-large_size/'
train_df = pd.read_csv('./metadata/train_full.csv')
valid_df = pd.read_csv('./metadata/SnakeCLEF2023-ValMetadata.csv')
is_venomous_df = pd.read_csv('./metadata/venomous_status_list.csv')
class_id2venomous ={}
venomous_mask = torch.ones(CFG['class_num'])
for class_id,is_venomous in zip(is_venomous_df['class_id'],is_venomous_df['MIVS']):
venomous_mask[class_id]=is_venomous
if class_id not in class_id2venomous.keys():
class_id2venomous[class_id] = is_venomous
train_df['MIVS'] = train_df['class_id'].map(class_id2venomous)
valid_df['MIVS'] = valid_df['class_id'].map(class_id2venomous)
class FGVCDataset(Dataset):
def __init__(self, df, data_root,
transforms=None,
output_label=True,
one_hot_label=False
):
super().__init__()
self.df = df.reset_index(drop=True).copy()
self.transforms = transforms
self.data_root = data_root
self.output_label = output_label
self.one_hot_label = one_hot_label
if output_label == True:
self.labels = self.df['class_id'].values
self.is_venomous = self.df['MIVS']
if one_hot_label is True:
self.labels = np.eye(self.df['class_id'].max() + 1)[self.labels]
def __len__(self):
return self.df.shape[0]
def __getitem__(self, index: int):
# get labels
if self.output_label:
target = self.labels[index]
venomous = self.is_venomous[index]
image_path = self.data_root + self.df.loc[index]['image_path']
img = get_img(image_path)
if self.transforms:
img = self.transforms(image=img)['image']
if self.output_label == True:
return img, target,venomous
else:
return img
def get_train_transforms():
return Compose([
RandomResizedCrop(CFG['img_size'], CFG['img_size'],
interpolation=cv2.INTER_CUBIC, scale=(0.5, 1.3)),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
ShiftScaleRotate(p=0.3),
PiecewiseAffine(p=0.5),
RandomBrightnessContrast(
brightness_limit=(-0.2, 0.2), contrast_limit=(-0.2, 0.2), p=1.0),
OneOf([
OpticalDistortion(distort_limit=1.0),
GridDistortion(num_steps=5, distort_limit=1.),
], p=0.5),
Normalize(mean=CFG['mean'], std=CFG['std'],
max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
def get_valid_transforms():
return Compose([
# SmallestMaxSize(CFG['img_size']),
Resize(CFG['img_size'], CFG['img_size'],
interpolation=cv2.INTER_CUBIC),
# CenterCrop(CFG['img_size'], CFG['img_size']),
Normalize(mean=CFG['mean'], std=CFG['std'],
max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
def prepare_dataloader(train_df, val_df, train_idx, val_idx):
train_ = train_df.loc[train_idx, :].reset_index(drop=True)
valid_ = val_df.loc[val_idx, :].reset_index(drop=True)
train_ds = FGVCDataset(train_, train_data_root, transforms=get_train_transforms())
valid_ds = FGVCDataset(valid_, val_data_root, transforms=get_valid_transforms())
train_loader = torch.utils.data.DataLoader(
train_ds,
batch_size=CFG['train_bs'],
pin_memory=False,
drop_last=False,
shuffle=True,
num_workers=CFG['num_workers']
)
val_loader = torch.utils.data.DataLoader(
valid_ds,
batch_size=CFG['valid_bs'],
num_workers=CFG['num_workers'],
shuffle=False,
pin_memory=False,
)
return train_loader, val_loader
def rand_bbox(size, lam):
W = size[2]
H = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = np.int32(W * cut_rat)
cut_h = np.int32(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
def generate_mask_random(imgs, patch=CFG['patch'], mask_token_num_start=14, lam=0.5):
_, _, W, H = imgs.shape
assert W % patch == 0
assert H % patch == 0
p = W // patch
mask_ratio = 1 - lam
num_masking_patches = min(p**2, int(mask_ratio * (p**2)) + mask_token_num_start)
mask_idx = np.random.permutation(p**2)[:num_masking_patches]
lam = 1 - num_masking_patches / (p**2)
return mask_idx, lam
def get_mixed_data(imgs, image_labels, is_venomous,mix_type):
mix_lst = ['cutmix', 'tokenmix', 'mixup', 'randommix']
assert mix_type in mix_lst, f'Not Supported mix type: {mix_type}'
if mix_type == 'randommix':
# select a mix_type randomly
mix_type = random.choice(mix_lst[:-2])
if mix_type == 'mixup':
alpha = 2.0
rand_index = torch.randperm(imgs.size()[0]).cuda()
target_a = image_labels
target_b = image_labels[rand_index]
lam = np.random.beta(alpha, alpha)
imgs = imgs * lam + imgs[rand_index] * (1 - lam)
elif mix_type == 'cutmix':
beta = 1.0
lam = np.random.beta(beta, beta)
rand_index = torch.randperm(imgs.size()[0]).cuda()
target_a = image_labels
target_b = image_labels[rand_index]
is_venomous_a = is_venomous
is_venomous_b = is_venomous[rand_index]
bbx1, bby1, bbx2, bby2 = rand_bbox(imgs.size(), lam)
imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[rand_index, :, bbx1:bbx2, bby1:bby2]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (imgs.size()[-1] * imgs.size()[-2]))
elif mix_type == 'tokenmix':
B, C, W, H = imgs.shape
mask_idx, lam = generate_mask_random(imgs)
rand_index = torch.randperm(imgs.size()[0]).cuda()
p = W // CFG['patch']
patch_w = CFG['patch']
patch_h = CFG['patch']
for idx in mask_idx:
row_s = idx // p
col_s = idx % p
x1 = patch_w * row_s
x2 = x1 + patch_w
y1 = patch_h * col_s
y2 = y1 + patch_h
imgs[:, :, x1:x2, y1:y2] = imgs[rand_index, :, x1:x2, y1:y2]
target_a = image_labels
target_b = image_labels[rand_index]
return imgs, target_a, target_b, is_venomous_a,is_venomous_b,lam
def train_one_epoch_mix(epoch, model, loss_fn, optimizer, train_loader, device, scheduler=None, schd_batch_update=False, mix_type=CFG['mix_type']):
model.train()
running_loss = None
image_preds_all = []
image_targets_all = []
pbar = tqdm(enumerate(train_loader), total=len(train_loader),ncols=70)
for step, (imgs, image_labels,is_venomous) in pbar:
imgs = imgs.to(device).float()
image_labels = image_labels.to(device).long()
is_venomous = is_venomous.to(device).float()#.long()
if np.random.rand(1) < CFG['mix_prob']:
imgs, target_a, target_b,is_venomous_a,is_venomous_b ,lam = get_mixed_data(imgs, image_labels, is_venomous,mix_type)
with autocast():
# image_preds = model(imgs)
# loss = loss_fn(image_preds, target_a) * lam + loss_fn(image_preds, target_b) * (1. - lam)
y_hat,expert_pred,alpha,image_preds = model(imgs)
loss = loss_fn(y_hat,expert_pred,alpha,image_preds,target_a,is_venomous_a)*lam+loss_fn(y_hat,expert_pred,alpha,image_preds,target_b,is_venomous_b)*(1.0-lam)
scaler.scale(loss).backward()
else:
with autocast():
y_hat,expert_pred,alpha,image_preds = model(imgs)
loss = loss_fn(y_hat,expert_pred,alpha,image_preds,image_labels,is_venomous)
scaler.scale(loss).backward()
image_preds_all += [torch.argmax(image_preds, 1).detach().cpu().numpy()]
image_targets_all += [image_labels.detach().cpu().numpy()]
if running_loss is None:
running_loss = loss.item()
else:
running_loss = running_loss * .99 + loss.item() * .01
# if running_loss >10:
# print(epoch)
if ((step + 1) % CFG['accum_iter'] == 0) or ((step + 1) == len(train_loader)):
# may unscale_ here if desired (e.g., to allow clipping unscaled gradients)
# torch.nn.utils.clip_grad_norm_(model.parameters(), 1e-8)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if scheduler is not None and schd_batch_update:
scheduler.step()
if ((step + 1) % CFG['verbose_step'] == 0) or ((step + 1) == len(train_loader)):
description = f'epoch {epoch} loss: {running_loss:.4f}'
pbar.set_description(description)
image_preds_all = np.concatenate(image_preds_all)
image_targets_all = np.concatenate(image_targets_all)
accuracy = (image_preds_all == image_targets_all).mean()
print('Train multi-class accuracy = {:.4f}'.format(accuracy))
logger.info(' Epoch: ' + str(epoch) + ' Train multi-class accuracy = {:.4f}'.format(accuracy))
logger.info(' Epoch: ' + str(epoch) + ' Train loss = {:.4f}'.format(running_loss))
if scheduler is not None and not schd_batch_update:
scheduler.step()
def valid_one_epoch(epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False):
model.eval()
loss_sum = 0
sample_num = 0
image_preds_all = []
image_targets_all = []
pbar = tqdm(enumerate(val_loader), total=len(val_loader),ncols=70)
for step, (imgs, image_labels,is_venomous) in pbar:
imgs = imgs.to(device).float()
image_labels = image_labels.to(device).long()
is_venomous = is_venomous.to(device).float()#.long()
# image_preds = model(imgs)
y_hat,expert_pred,alpha,image_preds = model(imgs)
image_preds_all += [torch.argmax(image_preds, 1).detach().cpu().numpy()]
image_targets_all += [image_labels.detach().cpu().numpy()]
# if openset, transform labels to calculate loss without reporting errors
openset_idx = image_labels == -1
image_labels[openset_idx] = 0 # just assign class_id: 0
loss = loss_fn(image_preds, image_labels)
loss_sum += loss.item() * image_labels.shape[0]
sample_num += image_labels.shape[0]
if ((step + 1) % CFG['verbose_step'] == 0) or ((step + 1) == len(val_loader)):
description = f'epoch {epoch} loss: {loss_sum / sample_num:.4f}'
pbar.set_description(description)
image_preds_all = np.concatenate(image_preds_all)
image_targets_all = np.concatenate(image_targets_all)
accuracy = (image_preds_all == image_targets_all).mean()
print('validation multi-class accuracy = {:.4f}'.format(accuracy))
logger.info(' Epoch: ' + str(epoch) + ' validation multi-class accuracy = {:.4f}'.format(accuracy))
if scheduler is not None:
if schd_loss_update:
scheduler.step(loss_sum / sample_num)
else:
scheduler.step()
return accuracy
if __name__ == '__main__':
# time.sleep(150 * 60)
seed_everything(CFG['seed'])
logger.info(CFG)
trn_idx = np.arange(train_df.shape[0])
val_idx = np.arange(valid_df.shape[0])
df_class_id = np.array(train_df['class_id'])
class_counts = np.bincount(df_class_id)
device = torch.device(CFG['device'])
model = Moe(CFG['model_arch'],CFG['class_num'],venomous_mask)
model = nn.DataParallel(model)
model.to(device)
model.module.not_venomous_mask.to(device)
model.module.venomous_mask.to(device)
train_loader, val_loader = prepare_dataloader(train_df, valid_df, trn_idx, val_idx)
scaler = GradScaler()
if CFG['differLR']:
backbone_params = list(map(id, model.module.backbone.parameters()))
head_params = filter(lambda p: id(p) not in backbone_params, model.parameters())
if CFG['head_lr']>0:
lr_cfg = [ {'params': model.module.backbone.parameters(), 'lr': CFG['lr'] ,'weight_decay':CFG['weight_decay']},
{'params': head_params , 'lr': CFG['head_lr'],'weight_decay':CFG['head_wd']}]
optimizer = torch.optim.AdamW(lr_cfg, lr=CFG['lr'], weight_decay=CFG['weight_decay'])
else:
# lr_cfg = [ {'params': model.module.backbone.parameters(), 'lr': CFG['lr'] ,'weight_decay':CFG['weight_decay']}]
print('frozen center')
# for param in model.module.center.parameters():
model.module.center.requires_grad = False
lr_cfg = [
{'params': model.module.backbone.parameters(), 'lr': CFG['lr'], 'weight_decay': CFG['weight_decay']}]
# head_params = {name: param for name, param in named_parameters if id(param) not in backbone_params}
optimizer = torch.optim.AdamW(lr_cfg, lr=CFG['lr'], weight_decay=CFG['weight_decay'])
else:
optimizer = torch.optim.AdamW(model.parameters(), lr=CFG['lr'], weight_decay=CFG['weight_decay'])
main_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=CFG['epochs'] - CFG['warmup_epochs'], eta_min=CFG['min_lr']
)
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=CFG['warmup_lr_factor'], total_iters=CFG['warmup_epochs']
)
scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[CFG['warmup_epochs']]
)
loss_tr = all_loss(class_counts,CFG['class_num']).to(device)
loss_fn = nn.CrossEntropyLoss(label_smoothing=CFG['smoothing']).to(device)
best_acc = 0.0
for epoch in range(CFG['epochs']):
print(optimizer.param_groups[0]['lr'])
train_one_epoch_mix(epoch, model, loss_tr, optimizer, train_loader, device, scheduler=scheduler)
temp_acc = 0.0
with torch.no_grad():
temp_acc = valid_one_epoch(epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False)
if temp_acc > best_acc:
torch.save(model.state_dict(), './checkpoints_moe/moe_{}_mix_{}_mixprob_{}_seed_{}_ls_{}_epochs_{}_differLR_{}_imsize{}.pth'.format(
CFG['model_arch'],
CFG['mix_type'],
CFG['mix_prob'],
CFG['seed'],
CFG['smoothing'],
CFG['epochs'],
CFG['differLR'],
CFG['img_size']))
if temp_acc > best_acc:
best_acc = temp_acc
del model, optimizer, train_loader, val_loader, scaler, scheduler
print(best_acc)
logger.info('BEST-Valid-ACC: ' + str(best_acc))
torch.cuda.empty_cache()
|