File size: 54,638 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
#!/usr/bin/env python3
""" ImageNet Training Script

This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet
training results with some of the latest networks and training techniques. It favours canonical PyTorch
and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed
and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit.

This script was started from an early version of the PyTorch ImageNet example
(https://github.com/pytorch/examples/tree/master/imagenet)

NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples
(https://github.com/NVIDIA/apex/tree/master/examples/imagenet)

Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman)
"""
import argparse
import importlib
import json
import logging
import os
import time
from collections import OrderedDict
from contextlib import suppress
from datetime import datetime
from functools import partial

import torch
import torch.nn as nn
import torchvision.utils
import yaml
from torch.nn.parallel import DistributedDataParallel as NativeDDP

from timm import utils
from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset
from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm
from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy
from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, model_parameters
from timm.optim import create_optimizer_v2, optimizer_kwargs
from timm.scheduler import create_scheduler_v2, scheduler_kwargs
from timm.utils import ApexScaler, NativeScaler

try:
    from apex import amp
    from apex.parallel import DistributedDataParallel as ApexDDP
    from apex.parallel import convert_syncbn_model
    has_apex = True
except ImportError:
    has_apex = False

has_native_amp = False
try:
    if getattr(torch.cuda.amp, 'autocast') is not None:
        has_native_amp = True
except AttributeError:
    pass

try:
    import wandb
    has_wandb = True
except ImportError:
    has_wandb = False

try:
    from functorch.compile import memory_efficient_fusion
    has_functorch = True
except ImportError as e:
    has_functorch = False

has_compile = hasattr(torch, 'compile')


_logger = logging.getLogger('train')

# The first arg parser parses out only the --config argument, this argument is used to
# load a yaml file containing key-values that override the defaults for the main parser below
config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False)
parser.add_argument('-c', '--config', default='', type=str, metavar='FILE',
                    help='YAML config file specifying default arguments')


parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')

# Dataset parameters
group = parser.add_argument_group('Dataset parameters')
# Keep this argument outside the dataset group because it is positional.
parser.add_argument('data', nargs='?', metavar='DIR', const=None,
                    help='path to dataset (positional is *deprecated*, use --data-dir)')
parser.add_argument('--data-dir', metavar='DIR',
                    help='path to dataset (root dir)')
parser.add_argument('--dataset', metavar='NAME', default='',
                    help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)')
group.add_argument('--train-split', metavar='NAME', default='train',
                   help='dataset train split (default: train)')
group.add_argument('--val-split', metavar='NAME', default='validation',
                   help='dataset validation split (default: validation)')
parser.add_argument('--train-num-samples', default=None, type=int,
                    metavar='N', help='Manually specify num samples in train split, for IterableDatasets.')
parser.add_argument('--val-num-samples', default=None, type=int,
                    metavar='N', help='Manually specify num samples in validation split, for IterableDatasets.')
group.add_argument('--dataset-download', action='store_true', default=False,
                   help='Allow download of dataset for torch/ and tfds/ datasets that support it.')
group.add_argument('--class-map', default='', type=str, metavar='FILENAME',
                   help='path to class to idx mapping file (default: "")')
group.add_argument('--input-img-mode', default=None, type=str,
                   help='Dataset image conversion mode for input images.')
group.add_argument('--input-key', default=None, type=str,
                   help='Dataset key for input images.')
group.add_argument('--target-key', default=None, type=str,
                   help='Dataset key for target labels.')

# Model parameters
group = parser.add_argument_group('Model parameters')
group.add_argument('--model', default='resnet50', type=str, metavar='MODEL',
                   help='Name of model to train (default: "resnet50")')
group.add_argument('--pretrained', action='store_true', default=False,
                   help='Start with pretrained version of specified network (if avail)')
group.add_argument('--pretrained-path', default=None, type=str,
                   help='Load this checkpoint as if they were the pretrained weights (with adaptation).')
group.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
                   help='Load this checkpoint into model after initialization (default: none)')
group.add_argument('--resume', default='', type=str, metavar='PATH',
                   help='Resume full model and optimizer state from checkpoint (default: none)')
group.add_argument('--no-resume-opt', action='store_true', default=False,
                   help='prevent resume of optimizer state when resuming model')
group.add_argument('--num-classes', type=int, default=None, metavar='N',
                   help='number of label classes (Model default if None)')
group.add_argument('--gp', default=None, type=str, metavar='POOL',
                   help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
group.add_argument('--img-size', type=int, default=None, metavar='N',
                   help='Image size (default: None => model default)')
group.add_argument('--in-chans', type=int, default=None, metavar='N',
                   help='Image input channels (default: None => 3)')
group.add_argument('--input-size', default=None, nargs=3, type=int,
                   metavar='N N N',
                   help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty')
group.add_argument('--crop-pct', default=None, type=float,
                   metavar='N', help='Input image center crop percent (for validation only)')
group.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
                   help='Override mean pixel value of dataset')
group.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
                   help='Override std deviation of dataset')
group.add_argument('--interpolation', default='', type=str, metavar='NAME',
                   help='Image resize interpolation type (overrides model)')
group.add_argument('-b', '--batch-size', type=int, default=128, metavar='N',
                   help='Input batch size for training (default: 128)')
group.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N',
                   help='Validation batch size override (default: None)')
group.add_argument('--channels-last', action='store_true', default=False,
                   help='Use channels_last memory layout')
group.add_argument('--fuser', default='', type=str,
                   help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')")
group.add_argument('--grad-accum-steps', type=int, default=1, metavar='N',
                   help='The number of steps to accumulate gradients (default: 1)')
group.add_argument('--grad-checkpointing', action='store_true', default=False,
                   help='Enable gradient checkpointing through model blocks/stages')
group.add_argument('--fast-norm', default=False, action='store_true',
                   help='enable experimental fast-norm')
group.add_argument('--model-kwargs', nargs='*', default={}, action=utils.ParseKwargs)
group.add_argument('--head-init-scale', default=None, type=float,
                   help='Head initialization scale')
group.add_argument('--head-init-bias', default=None, type=float,
                   help='Head initialization bias value')

# scripting / codegen
scripting_group = group.add_mutually_exclusive_group()
scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true',
                             help='torch.jit.script the full model')
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor',
                             help="Enable compilation w/ specified backend (default: inductor).")

# Device & distributed
group = parser.add_argument_group('Device parameters')
group.add_argument('--device', default='cuda', type=str,
                    help="Device (accelerator) to use.")
group.add_argument('--amp', action='store_true', default=False,
                   help='use NVIDIA Apex AMP or Native AMP for mixed precision training')
group.add_argument('--amp-dtype', default='float16', type=str,
                   help='lower precision AMP dtype (default: float16)')
group.add_argument('--amp-impl', default='native', type=str,
                   help='AMP impl to use, "native" or "apex" (default: native)')
group.add_argument('--no-ddp-bb', action='store_true', default=False,
                   help='Force broadcast buffers for native DDP to off.')
group.add_argument('--synchronize-step', action='store_true', default=False,
                   help='torch.cuda.synchronize() end of each step')
group.add_argument("--local_rank", default=0, type=int)
parser.add_argument('--device-modules', default=None, type=str, nargs='+',
                    help="Python imports for device backend modules.")

# Optimizer parameters
group = parser.add_argument_group('Optimizer parameters')
group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER',
                   help='Optimizer (default: "sgd")')
group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON',
                   help='Optimizer Epsilon (default: None, use opt default)')
group.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
                   help='Optimizer Betas (default: None, use opt default)')
group.add_argument('--momentum', type=float, default=0.9, metavar='M',
                   help='Optimizer momentum (default: 0.9)')
group.add_argument('--weight-decay', type=float, default=2e-5,
                   help='weight decay (default: 2e-5)')
group.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
                   help='Clip gradient norm (default: None, no clipping)')
group.add_argument('--clip-mode', type=str, default='norm',
                   help='Gradient clipping mode. One of ("norm", "value", "agc")')
group.add_argument('--layer-decay', type=float, default=None,
                   help='layer-wise learning rate decay (default: None)')
group.add_argument('--opt-kwargs', nargs='*', default={}, action=utils.ParseKwargs)

# Learning rate schedule parameters
group = parser.add_argument_group('Learning rate schedule parameters')
group.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER',
                   help='LR scheduler (default: "step"')
group.add_argument('--sched-on-updates', action='store_true', default=False,
                   help='Apply LR scheduler step on update instead of epoch end.')
group.add_argument('--lr', type=float, default=None, metavar='LR',
                   help='learning rate, overrides lr-base if set (default: None)')
group.add_argument('--lr-base', type=float, default=0.1, metavar='LR',
                   help='base learning rate: lr = lr_base * global_batch_size / base_size')
group.add_argument('--lr-base-size', type=int, default=256, metavar='DIV',
                   help='base learning rate batch size (divisor, default: 256).')
group.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE',
                   help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)')
group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
                   help='learning rate noise on/off epoch percentages')
group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
                   help='learning rate noise limit percent (default: 0.67)')
group.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
                   help='learning rate noise std-dev (default: 1.0)')
group.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT',
                   help='learning rate cycle len multiplier (default: 1.0)')
group.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT',
                   help='amount to decay each learning rate cycle (default: 0.5)')
group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N',
                   help='learning rate cycle limit, cycles enabled if > 1')
group.add_argument('--lr-k-decay', type=float, default=1.0,
                   help='learning rate k-decay for cosine/poly (default: 1.0)')
group.add_argument('--warmup-lr', type=float, default=1e-5, metavar='LR',
                   help='warmup learning rate (default: 1e-5)')
group.add_argument('--min-lr', type=float, default=0, metavar='LR',
                   help='lower lr bound for cyclic schedulers that hit 0 (default: 0)')
group.add_argument('--epochs', type=int, default=300, metavar='N',
                   help='number of epochs to train (default: 300)')
group.add_argument('--epoch-repeats', type=float, default=0., metavar='N',
                   help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).')
group.add_argument('--start-epoch', default=None, type=int, metavar='N',
                   help='manual epoch number (useful on restarts)')
group.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar="MILESTONES",
                   help='list of decay epoch indices for multistep lr. must be increasing')
group.add_argument('--decay-epochs', type=float, default=90, metavar='N',
                   help='epoch interval to decay LR')
group.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
                   help='epochs to warmup LR, if scheduler supports')
group.add_argument('--warmup-prefix', action='store_true', default=False,
                   help='Exclude warmup period from decay schedule.'),
group.add_argument('--cooldown-epochs', type=int, default=0, metavar='N',
                   help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
group.add_argument('--patience-epochs', type=int, default=10, metavar='N',
                   help='patience epochs for Plateau LR scheduler (default: 10)')
group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
                   help='LR decay rate (default: 0.1)')

# Augmentation & regularization parameters
group = parser.add_argument_group('Augmentation and regularization parameters')
group.add_argument('--no-aug', action='store_true', default=False,
                   help='Disable all training augmentation, override other train aug args')
group.add_argument('--train-crop-mode', type=str, default=None,
                   help='Crop-mode in train'),
group.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT',
                   help='Random resize scale (default: 0.08 1.0)')
group.add_argument('--ratio', type=float, nargs='+', default=[3. / 4., 4. / 3.], metavar='RATIO',
                   help='Random resize aspect ratio (default: 0.75 1.33)')
group.add_argument('--hflip', type=float, default=0.5,
                   help='Horizontal flip training aug probability')
group.add_argument('--vflip', type=float, default=0.,
                   help='Vertical flip training aug probability')
group.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
                   help='Color jitter factor (default: 0.4)')
group.add_argument('--color-jitter-prob', type=float, default=None, metavar='PCT',
                   help='Probability of applying any color jitter.')
group.add_argument('--grayscale-prob', type=float, default=None, metavar='PCT',
                   help='Probability of applying random grayscale conversion.')
group.add_argument('--gaussian-blur-prob', type=float, default=None, metavar='PCT',
                   help='Probability of applying gaussian blur.')
group.add_argument('--aa', type=str, default=None, metavar='NAME',
                   help='Use AutoAugment policy. "v0" or "original". (default: None)'),
group.add_argument('--aug-repeats', type=float, default=0,
                   help='Number of augmentation repetitions (distributed training only) (default: 0)')
group.add_argument('--aug-splits', type=int, default=0,
                   help='Number of augmentation splits (default: 0, valid: 0 or >=2)')
group.add_argument('--jsd-loss', action='store_true', default=False,
                   help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.')
group.add_argument('--bce-loss', action='store_true', default=False,
                   help='Enable BCE loss w/ Mixup/CutMix use.')
group.add_argument('--bce-sum', action='store_true', default=False,
                   help='Sum over classes when using BCE loss.')
group.add_argument('--bce-target-thresh', type=float, default=None,
                   help='Threshold for binarizing softened BCE targets (default: None, disabled).')
group.add_argument('--bce-pos-weight', type=float, default=None,
                   help='Positive weighting for BCE loss.')
group.add_argument('--reprob', type=float, default=0., metavar='PCT',
                   help='Random erase prob (default: 0.)')
group.add_argument('--remode', type=str, default='pixel',
                   help='Random erase mode (default: "pixel")')
group.add_argument('--recount', type=int, default=1,
                   help='Random erase count (default: 1)')
group.add_argument('--resplit', action='store_true', default=False,
                   help='Do not random erase first (clean) augmentation split')
group.add_argument('--mixup', type=float, default=0.0,
                   help='mixup alpha, mixup enabled if > 0. (default: 0.)')
group.add_argument('--cutmix', type=float, default=0.0,
                   help='cutmix alpha, cutmix enabled if > 0. (default: 0.)')
group.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
                   help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
group.add_argument('--mixup-prob', type=float, default=1.0,
                   help='Probability of performing mixup or cutmix when either/both is enabled')
group.add_argument('--mixup-switch-prob', type=float, default=0.5,
                   help='Probability of switching to cutmix when both mixup and cutmix enabled')
group.add_argument('--mixup-mode', type=str, default='batch',
                   help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
group.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N',
                   help='Turn off mixup after this epoch, disabled if 0 (default: 0)')
group.add_argument('--smoothing', type=float, default=0.1,
                   help='Label smoothing (default: 0.1)')
group.add_argument('--train-interpolation', type=str, default='random',
                   help='Training interpolation (random, bilinear, bicubic default: "random")')
group.add_argument('--drop', type=float, default=0.0, metavar='PCT',
                   help='Dropout rate (default: 0.)')
group.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
                   help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
group.add_argument('--drop-path', type=float, default=None, metavar='PCT',
                   help='Drop path rate (default: None)')
group.add_argument('--drop-block', type=float, default=None, metavar='PCT',
                   help='Drop block rate (default: None)')

# Batch norm parameters (only works with gen_efficientnet based models currently)
group = parser.add_argument_group('Batch norm parameters', 'Only works with gen_efficientnet based models currently.')
group.add_argument('--bn-momentum', type=float, default=None,
                   help='BatchNorm momentum override (if not None)')
group.add_argument('--bn-eps', type=float, default=None,
                   help='BatchNorm epsilon override (if not None)')
group.add_argument('--sync-bn', action='store_true',
                   help='Enable NVIDIA Apex or Torch synchronized BatchNorm.')
group.add_argument('--dist-bn', type=str, default='reduce',
                   help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")')
group.add_argument('--split-bn', action='store_true',
                   help='Enable separate BN layers per augmentation split.')

# Model Exponential Moving Average
group = parser.add_argument_group('Model exponential moving average parameters')
group.add_argument('--model-ema', action='store_true', default=False,
                   help='Enable tracking moving average of model weights.')
group.add_argument('--model-ema-force-cpu', action='store_true', default=False,
                   help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.')
group.add_argument('--model-ema-decay', type=float, default=0.9998,
                   help='Decay factor for model weights moving average (default: 0.9998)')
group.add_argument('--model-ema-warmup', action='store_true',
                   help='Enable warmup for model EMA decay.')

# Misc
group = parser.add_argument_group('Miscellaneous parameters')
group.add_argument('--seed', type=int, default=42, metavar='S',
                   help='random seed (default: 42)')
group.add_argument('--worker-seeding', type=str, default='all',
                   help='worker seed mode (default: all)')
group.add_argument('--log-interval', type=int, default=50, metavar='N',
                   help='how many batches to wait before logging training status')
group.add_argument('--recovery-interval', type=int, default=0, metavar='N',
                   help='how many batches to wait before writing recovery checkpoint')
group.add_argument('--checkpoint-hist', type=int, default=10, metavar='N',
                   help='number of checkpoints to keep (default: 10)')
group.add_argument('-j', '--workers', type=int, default=4, metavar='N',
                   help='how many training processes to use (default: 4)')
group.add_argument('--save-images', action='store_true', default=False,
                   help='save images of input bathes every log interval for debugging')
group.add_argument('--pin-mem', action='store_true', default=False,
                   help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
group.add_argument('--no-prefetcher', action='store_true', default=False,
                   help='disable fast prefetcher')
group.add_argument('--output', default='', type=str, metavar='PATH',
                   help='path to output folder (default: none, current dir)')
group.add_argument('--experiment', default='', type=str, metavar='NAME',
                   help='name of train experiment, name of sub-folder for output')
group.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC',
                   help='Best metric (default: "top1"')
group.add_argument('--tta', type=int, default=0, metavar='N',
                   help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)')
group.add_argument('--use-multi-epochs-loader', action='store_true', default=False,
                   help='use the multi-epochs-loader to save time at the beginning of every epoch')
group.add_argument('--log-wandb', action='store_true', default=False,
                   help='log training and validation metrics to wandb')


def _parse_args():
    # Do we have a config file to parse?
    args_config, remaining = config_parser.parse_known_args()
    if args_config.config:
        with open(args_config.config, 'r') as f:
            cfg = yaml.safe_load(f)
            parser.set_defaults(**cfg)

    # The main arg parser parses the rest of the args, the usual
    # defaults will have been overridden if config file specified.
    args = parser.parse_args(remaining)

    # Cache the args as a text string to save them in the output dir later
    args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
    return args, args_text


def main():
    utils.setup_default_logging()
    args, args_text = _parse_args()

    if args.device_modules:
        for module in args.device_modules:
            importlib.import_module(module)

    if torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.benchmark = True

    args.prefetcher = not args.no_prefetcher
    args.grad_accum_steps = max(1, args.grad_accum_steps)
    device = utils.init_distributed_device(args)
    if args.distributed:
        _logger.info(
            'Training in distributed mode with multiple processes, 1 device per process.'
            f'Process {args.rank}, total {args.world_size}, device {args.device}.')
    else:
        _logger.info(f'Training with a single process on 1 device ({args.device}).')
    assert args.rank >= 0

    # resolve AMP arguments based on PyTorch / Apex availability
    use_amp = None
    amp_dtype = torch.float16
    if args.amp:
        if args.amp_impl == 'apex':
            assert has_apex, 'AMP impl specified as APEX but APEX is not installed.'
            use_amp = 'apex'
            assert args.amp_dtype == 'float16'
        else:
            assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).'
            use_amp = 'native'
            assert args.amp_dtype in ('float16', 'bfloat16')
        if args.amp_dtype == 'bfloat16':
            amp_dtype = torch.bfloat16

    utils.random_seed(args.seed, args.rank)

    if args.fuser:
        utils.set_jit_fuser(args.fuser)
    if args.fast_norm:
        set_fast_norm()

    in_chans = 3
    if args.in_chans is not None:
        in_chans = args.in_chans
    elif args.input_size is not None:
        in_chans = args.input_size[0]

    factory_kwargs = {}
    if args.pretrained_path:
        # merge with pretrained_cfg of model, 'file' has priority over 'url' and 'hf_hub'.
        factory_kwargs['pretrained_cfg_overlay'] = dict(
            file=args.pretrained_path,
            num_classes=-1,  # force head adaptation
        )

    model = create_model(
        args.model,
        pretrained=args.pretrained,
        in_chans=in_chans,
        num_classes=args.num_classes,
        drop_rate=args.drop,
        drop_path_rate=args.drop_path,
        drop_block_rate=args.drop_block,
        global_pool=args.gp,
        bn_momentum=args.bn_momentum,
        bn_eps=args.bn_eps,
        scriptable=args.torchscript,
        checkpoint_path=args.initial_checkpoint,
        **factory_kwargs,
        **args.model_kwargs,
    )
    if args.head_init_scale is not None:
        with torch.no_grad():
            model.get_classifier().weight.mul_(args.head_init_scale)
            model.get_classifier().bias.mul_(args.head_init_scale)
    if args.head_init_bias is not None:
        nn.init.constant_(model.get_classifier().bias, args.head_init_bias)

    if args.num_classes is None:
        assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.'
        args.num_classes = model.num_classes  # FIXME handle model default vs config num_classes more elegantly

    if args.grad_checkpointing:
        model.set_grad_checkpointing(enable=True)

    if utils.is_primary(args):
        _logger.info(
            f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}')

    data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args))

    # setup augmentation batch splits for contrastive loss or split bn
    num_aug_splits = 0
    if args.aug_splits > 0:
        assert args.aug_splits > 1, 'A split of 1 makes no sense'
        num_aug_splits = args.aug_splits

    # enable split bn (separate bn stats per batch-portion)
    if args.split_bn:
        assert num_aug_splits > 1 or args.resplit
        model = convert_splitbn_model(model, max(num_aug_splits, 2))

    # move model to GPU, enable channels last layout if set
    model.to(device=device)
    if args.channels_last:
        model.to(memory_format=torch.channels_last)

    # setup synchronized BatchNorm for distributed training
    if args.distributed and args.sync_bn:
        args.dist_bn = ''  # disable dist_bn when sync BN active
        assert not args.split_bn
        if has_apex and use_amp == 'apex':
            # Apex SyncBN used with Apex AMP
            # WARNING this won't currently work with models using BatchNormAct2d
            model = convert_syncbn_model(model)
        else:
            model = convert_sync_batchnorm(model)
        if utils.is_primary(args):
            _logger.info(
                'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using '
                'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.')

    if args.torchscript:
        assert not args.torchcompile
        assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model'
        assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model'
        model = torch.jit.script(model)

    if not args.lr:
        global_batch_size = args.batch_size * args.world_size * args.grad_accum_steps
        batch_ratio = global_batch_size / args.lr_base_size
        if not args.lr_base_scale:
            on = args.opt.lower()
            args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear'
        if args.lr_base_scale == 'sqrt':
            batch_ratio = batch_ratio ** 0.5
        args.lr = args.lr_base * batch_ratio
        if utils.is_primary(args):
            _logger.info(
                f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) '
                f'and effective global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.')

    optimizer = create_optimizer_v2(
        model,
        **optimizer_kwargs(cfg=args),
        **args.opt_kwargs,
    )

    # setup automatic mixed-precision (AMP) loss scaling and op casting
    amp_autocast = suppress  # do nothing
    loss_scaler = None
    if use_amp == 'apex':
        assert device.type == 'cuda'
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')
        loss_scaler = ApexScaler()
        if utils.is_primary(args):
            _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.')
    elif use_amp == 'native':
        try:
            amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype)
        except (AttributeError, TypeError):
            # fallback to CUDA only AMP for PyTorch < 1.10
            assert device.type == 'cuda'
            amp_autocast = torch.cuda.amp.autocast
        if device.type == 'cuda' and amp_dtype == torch.float16:
            # loss scaler only used for float16 (half) dtype, bfloat16 does not need it
            loss_scaler = NativeScaler()
        if utils.is_primary(args):
            _logger.info('Using native Torch AMP. Training in mixed precision.')
    else:
        if utils.is_primary(args):
            _logger.info('AMP not enabled. Training in float32.')

    # optionally resume from a checkpoint
    resume_epoch = None
    if args.resume:
        resume_epoch = resume_checkpoint(
            model,
            args.resume,
            optimizer=None if args.no_resume_opt else optimizer,
            loss_scaler=None if args.no_resume_opt else loss_scaler,
            log_info=utils.is_primary(args),
        )

    # setup exponential moving average of model weights, SWA could be used here too
    model_ema = None
    if args.model_ema:
        # Important to create EMA model after cuda(), DP wrapper, and AMP but before DDP wrapper
        model_ema = utils.ModelEmaV3(
            model,
            decay=args.model_ema_decay,
            use_warmup=args.model_ema_warmup,
            device='cpu' if args.model_ema_force_cpu else None,
        )
        if args.resume:
            load_checkpoint(model_ema.module, args.resume, use_ema=True)
        if args.torchcompile:
            model_ema = torch.compile(model_ema, backend=args.torchcompile)

    # setup distributed training
    if args.distributed:
        if has_apex and use_amp == 'apex':
            # Apex DDP preferred unless native amp is activated
            if utils.is_primary(args):
                _logger.info("Using NVIDIA APEX DistributedDataParallel.")
            model = ApexDDP(model, delay_allreduce=True)
        else:
            if utils.is_primary(args):
                _logger.info("Using native Torch DistributedDataParallel.")
            model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb)
        # NOTE: EMA model does not need to be wrapped by DDP

    if args.torchcompile:
        # torch compile should be done after DDP
        assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.'
        model = torch.compile(model, backend=args.torchcompile)

    # create the train and eval datasets
    if args.data and not args.data_dir:
        args.data_dir = args.data
    if args.input_img_mode is None:
        input_img_mode = 'RGB' if data_config['input_size'][0] == 3 else 'L'
    else:
        input_img_mode = args.input_img_mode

    dataset_train = create_dataset(
        args.dataset,
        root=args.data_dir,
        split=args.train_split,
        is_training=True,
        class_map=args.class_map,
        download=args.dataset_download,
        batch_size=args.batch_size,
        seed=args.seed,
        repeats=args.epoch_repeats,
        input_img_mode=input_img_mode,
        input_key=args.input_key,
        target_key=args.target_key,
        num_samples=args.train_num_samples,
    )

    if args.val_split:
        dataset_eval = create_dataset(
            args.dataset,
            root=args.data_dir,
            split=args.val_split,
            is_training=False,
            class_map=args.class_map,
            download=args.dataset_download,
            batch_size=args.batch_size,
            input_img_mode=input_img_mode,
            input_key=args.input_key,
            target_key=args.target_key,
            num_samples=args.val_num_samples,
        )

    # setup mixup / cutmix
    collate_fn = None
    mixup_fn = None
    mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
    if mixup_active:
        mixup_args = dict(
            mixup_alpha=args.mixup,
            cutmix_alpha=args.cutmix,
            cutmix_minmax=args.cutmix_minmax,
            prob=args.mixup_prob,
            switch_prob=args.mixup_switch_prob,
            mode=args.mixup_mode,
            label_smoothing=args.smoothing,
            num_classes=args.num_classes
        )
        if args.prefetcher:
            assert not num_aug_splits  # collate conflict (need to support de-interleaving in collate mixup)
            collate_fn = FastCollateMixup(**mixup_args)
        else:
            mixup_fn = Mixup(**mixup_args)

    # wrap dataset in AugMix helper
    if num_aug_splits > 1:
        dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits)

    # create data loaders w/ augmentation pipeline
    train_interpolation = args.train_interpolation
    if args.no_aug or not train_interpolation:
        train_interpolation = data_config['interpolation']
    loader_train = create_loader(
        dataset_train,
        input_size=data_config['input_size'],
        batch_size=args.batch_size,
        is_training=True,
        no_aug=args.no_aug,
        re_prob=args.reprob,
        re_mode=args.remode,
        re_count=args.recount,
        re_split=args.resplit,
        train_crop_mode=args.train_crop_mode,
        scale=args.scale,
        ratio=args.ratio,
        hflip=args.hflip,
        vflip=args.vflip,
        color_jitter=args.color_jitter,
        color_jitter_prob=args.color_jitter_prob,
        grayscale_prob=args.grayscale_prob,
        gaussian_blur_prob=args.gaussian_blur_prob,
        auto_augment=args.aa,
        num_aug_repeats=args.aug_repeats,
        num_aug_splits=num_aug_splits,
        interpolation=train_interpolation,
        mean=data_config['mean'],
        std=data_config['std'],
        num_workers=args.workers,
        distributed=args.distributed,
        collate_fn=collate_fn,
        pin_memory=args.pin_mem,
        device=device,
        use_prefetcher=args.prefetcher,
        use_multi_epochs_loader=args.use_multi_epochs_loader,
        worker_seeding=args.worker_seeding,
    )

    loader_eval = None
    if args.val_split:
        eval_workers = args.workers
        if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset):
            # FIXME reduces validation padding issues when using TFDS, WDS w/ workers and distributed training
            eval_workers = min(2, args.workers)
        loader_eval = create_loader(
            dataset_eval,
            input_size=data_config['input_size'],
            batch_size=args.validation_batch_size or args.batch_size,
            is_training=False,
            interpolation=data_config['interpolation'],
            mean=data_config['mean'],
            std=data_config['std'],
            num_workers=eval_workers,
            distributed=args.distributed,
            crop_pct=data_config['crop_pct'],
            pin_memory=args.pin_mem,
            device=device,
            use_prefetcher=args.prefetcher,
        )

    # setup loss function
    if args.jsd_loss:
        assert num_aug_splits > 1  # JSD only valid with aug splits set
        train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing)
    elif mixup_active:
        # smoothing is handled with mixup target transform which outputs sparse, soft targets
        if args.bce_loss:
            train_loss_fn = BinaryCrossEntropy(
                target_threshold=args.bce_target_thresh,
                sum_classes=args.bce_sum,
                pos_weight=args.bce_pos_weight,
            )
        else:
            train_loss_fn = SoftTargetCrossEntropy()
    elif args.smoothing:
        if args.bce_loss:
            train_loss_fn = BinaryCrossEntropy(
                smoothing=args.smoothing,
                target_threshold=args.bce_target_thresh,
                sum_classes=args.bce_sum,
                pos_weight=args.bce_pos_weight,
            )
        else:
            train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
    else:
        train_loss_fn = nn.CrossEntropyLoss()
    train_loss_fn = train_loss_fn.to(device=device)
    validate_loss_fn = nn.CrossEntropyLoss().to(device=device)

    # setup checkpoint saver and eval metric tracking
    eval_metric = args.eval_metric if loader_eval is not None else 'loss'
    decreasing_metric = eval_metric == 'loss'
    best_metric = None
    best_epoch = None
    saver = None
    output_dir = None
    if utils.is_primary(args):
        if args.experiment:
            exp_name = args.experiment
        else:
            exp_name = '-'.join([
                datetime.now().strftime("%Y%m%d-%H%M%S"),
                safe_model_name(args.model),
                str(data_config['input_size'][-1])
            ])
        output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name)
        saver = utils.CheckpointSaver(
            model=model,
            optimizer=optimizer,
            args=args,
            model_ema=model_ema,
            amp_scaler=loss_scaler,
            checkpoint_dir=output_dir,
            recovery_dir=output_dir,
            decreasing=decreasing_metric,
            max_history=args.checkpoint_hist
        )
        with open(os.path.join(output_dir, 'args.yaml'), 'w') as f:
            f.write(args_text)

    if utils.is_primary(args) and args.log_wandb:
        if has_wandb:
            wandb.init(project=args.experiment, config=args)
        else:
            _logger.warning(
                "You've requested to log metrics to wandb but package not found. "
                "Metrics not being logged to wandb, try `pip install wandb`")

    # setup learning rate schedule and starting epoch
    updates_per_epoch = (len(loader_train) + args.grad_accum_steps - 1) // args.grad_accum_steps
    lr_scheduler, num_epochs = create_scheduler_v2(
        optimizer,
        **scheduler_kwargs(args, decreasing_metric=decreasing_metric),
        updates_per_epoch=updates_per_epoch,
    )
    start_epoch = 0
    if args.start_epoch is not None:
        # a specified start_epoch will always override the resume epoch
        start_epoch = args.start_epoch
    elif resume_epoch is not None:
        start_epoch = resume_epoch
    if lr_scheduler is not None and start_epoch > 0:
        if args.sched_on_updates:
            lr_scheduler.step_update(start_epoch * updates_per_epoch)
        else:
            lr_scheduler.step(start_epoch)

    if utils.is_primary(args):
        _logger.info(
            f'Scheduled epochs: {num_epochs}. LR stepped per {"epoch" if lr_scheduler.t_in_epochs else "update"}.')

    results = []
    try:
        for epoch in range(start_epoch, num_epochs):
            if hasattr(dataset_train, 'set_epoch'):
                dataset_train.set_epoch(epoch)
            elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'):
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_one_epoch(
                epoch,
                model,
                loader_train,
                optimizer,
                train_loss_fn,
                args,
                lr_scheduler=lr_scheduler,
                saver=saver,
                output_dir=output_dir,
                amp_autocast=amp_autocast,
                loss_scaler=loss_scaler,
                model_ema=model_ema,
                mixup_fn=mixup_fn,
                num_updates_total=num_epochs * updates_per_epoch,
            )

            if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                if utils.is_primary(args):
                    _logger.info("Distributing BatchNorm running means and vars")
                utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce')

            if loader_eval is not None:
                eval_metrics = validate(
                    model,
                    loader_eval,
                    validate_loss_fn,
                    args,
                    device=device,
                    amp_autocast=amp_autocast,
                )

                if model_ema is not None and not args.model_ema_force_cpu:
                    if args.distributed and args.dist_bn in ('broadcast', 'reduce'):
                        utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce')

                    ema_eval_metrics = validate(
                        model_ema,
                        loader_eval,
                        validate_loss_fn,
                        args,
                        device=device,
                        amp_autocast=amp_autocast,
                        log_suffix=' (EMA)',
                    )
                    eval_metrics = ema_eval_metrics
            else:
                eval_metrics = None

            if output_dir is not None:
                lrs = [param_group['lr'] for param_group in optimizer.param_groups]
                utils.update_summary(
                    epoch,
                    train_metrics,
                    eval_metrics,
                    filename=os.path.join(output_dir, 'summary.csv'),
                    lr=sum(lrs) / len(lrs),
                    write_header=best_metric is None,
                    log_wandb=args.log_wandb and has_wandb,
                )

            if eval_metrics is not None:
                latest_metric = eval_metrics[eval_metric]
            else:
                latest_metric = train_metrics[eval_metric]

            if saver is not None:
                # save proper checkpoint with eval metric
                best_metric, best_epoch = saver.save_checkpoint(epoch, metric=latest_metric)

            if lr_scheduler is not None:
                # step LR for next epoch
                lr_scheduler.step(epoch + 1, latest_metric)

            results.append({
                'epoch': epoch,
                'train': train_metrics,
                'validation': eval_metrics,
            })

    except KeyboardInterrupt:
        pass

    results = {'all': results}
    if best_metric is not None:
        results['best'] = results['all'][best_epoch - start_epoch]
        _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))
    print(f'--result\n{json.dumps(results, indent=4)}')


def train_one_epoch(
        epoch,
        model,
        loader,
        optimizer,
        loss_fn,
        args,
        device=torch.device('cuda'),
        lr_scheduler=None,
        saver=None,
        output_dir=None,
        amp_autocast=suppress,
        loss_scaler=None,
        model_ema=None,
        mixup_fn=None,
        num_updates_total=None,
):
    if args.mixup_off_epoch and epoch >= args.mixup_off_epoch:
        if args.prefetcher and loader.mixup_enabled:
            loader.mixup_enabled = False
        elif mixup_fn is not None:
            mixup_fn.mixup_enabled = False

    second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
    has_no_sync = hasattr(model, "no_sync")
    update_time_m = utils.AverageMeter()
    data_time_m = utils.AverageMeter()
    losses_m = utils.AverageMeter()

    model.train()

    accum_steps = args.grad_accum_steps
    last_accum_steps = len(loader) % accum_steps
    updates_per_epoch = (len(loader) + accum_steps - 1) // accum_steps
    num_updates = epoch * updates_per_epoch
    last_batch_idx = len(loader) - 1
    last_batch_idx_to_accum = len(loader) - last_accum_steps

    data_start_time = update_start_time = time.time()
    optimizer.zero_grad()
    update_sample_count = 0
    for batch_idx, (input, target) in enumerate(loader):
        last_batch = batch_idx == last_batch_idx
        need_update = last_batch or (batch_idx + 1) % accum_steps == 0
        update_idx = batch_idx // accum_steps
        if batch_idx >= last_batch_idx_to_accum:
            accum_steps = last_accum_steps

        if not args.prefetcher:
            input, target = input.to(device), target.to(device)
            if mixup_fn is not None:
                input, target = mixup_fn(input, target)
        if args.channels_last:
            input = input.contiguous(memory_format=torch.channels_last)

        # multiply by accum steps to get equivalent for full update
        data_time_m.update(accum_steps * (time.time() - data_start_time))

        def _forward():
            with amp_autocast():
                output = model(input)
                loss = loss_fn(output, target)
            if accum_steps > 1:
                loss /= accum_steps
            return loss

        def _backward(_loss):
            if loss_scaler is not None:
                loss_scaler(
                    _loss,
                    optimizer,
                    clip_grad=args.clip_grad,
                    clip_mode=args.clip_mode,
                    parameters=model_parameters(model, exclude_head='agc' in args.clip_mode),
                    create_graph=second_order,
                    need_update=need_update,
                )
            else:
                _loss.backward(create_graph=second_order)
                if need_update:
                    if args.clip_grad is not None:
                        utils.dispatch_clip_grad(
                            model_parameters(model, exclude_head='agc' in args.clip_mode),
                            value=args.clip_grad,
                            mode=args.clip_mode,
                        )
                    optimizer.step()

        if has_no_sync and not need_update:
            with model.no_sync():
                loss = _forward()
                _backward(loss)
        else:
            loss = _forward()
            _backward(loss)

        if not args.distributed:
            losses_m.update(loss.item() * accum_steps, input.size(0))
        update_sample_count += input.size(0)

        if not need_update:
            data_start_time = time.time()
            continue

        num_updates += 1
        optimizer.zero_grad()
        if model_ema is not None:
            model_ema.update(model, step=num_updates)

        if args.synchronize_step and device.type == 'cuda':
            torch.cuda.synchronize()
        time_now = time.time()
        update_time_m.update(time.time() - update_start_time)
        update_start_time = time_now

        if update_idx % args.log_interval == 0:
            lrl = [param_group['lr'] for param_group in optimizer.param_groups]
            lr = sum(lrl) / len(lrl)

            if args.distributed:
                reduced_loss = utils.reduce_tensor(loss.data, args.world_size)
                losses_m.update(reduced_loss.item() * accum_steps, input.size(0))
                update_sample_count *= args.world_size

            if utils.is_primary(args):
                _logger.info(
                    f'Train: {epoch} [{update_idx:>4d}/{updates_per_epoch} '
                    f'({100. * update_idx / (updates_per_epoch - 1):>3.0f}%)]  '
                    f'Loss: {losses_m.val:#.3g} ({losses_m.avg:#.3g})  '
                    f'Time: {update_time_m.val:.3f}s, {update_sample_count / update_time_m.val:>7.2f}/s  '
                    f'({update_time_m.avg:.3f}s, {update_sample_count / update_time_m.avg:>7.2f}/s)  '
                    f'LR: {lr:.3e}  '
                    f'Data: {data_time_m.val:.3f} ({data_time_m.avg:.3f})'
                )

                if args.save_images and output_dir:
                    torchvision.utils.save_image(
                        input,
                        os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx),
                        padding=0,
                        normalize=True
                    )

        if saver is not None and args.recovery_interval and (
                (update_idx + 1) % args.recovery_interval == 0):
            saver.save_recovery(epoch, batch_idx=update_idx)

        if lr_scheduler is not None:
            lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg)

        update_sample_count = 0
        data_start_time = time.time()
        # end for

    if hasattr(optimizer, 'sync_lookahead'):
        optimizer.sync_lookahead()

    return OrderedDict([('loss', losses_m.avg)])


def validate(
        model,
        loader,
        loss_fn,
        args,
        device=torch.device('cuda'),
        amp_autocast=suppress,
        log_suffix=''
):
    batch_time_m = utils.AverageMeter()
    losses_m = utils.AverageMeter()
    top1_m = utils.AverageMeter()
    top5_m = utils.AverageMeter()

    model.eval()

    end = time.time()
    last_idx = len(loader) - 1
    with torch.no_grad():
        for batch_idx, (input, target) in enumerate(loader):
            last_batch = batch_idx == last_idx
            if not args.prefetcher:
                input = input.to(device)
                target = target.to(device)
            if args.channels_last:
                input = input.contiguous(memory_format=torch.channels_last)

            with amp_autocast():
                output = model(input)
                if isinstance(output, (tuple, list)):
                    output = output[0]

                # augmentation reduction
                reduce_factor = args.tta
                if reduce_factor > 1:
                    output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2)
                    target = target[0:target.size(0):reduce_factor]

                loss = loss_fn(output, target)
            acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))

            if args.distributed:
                reduced_loss = utils.reduce_tensor(loss.data, args.world_size)
                acc1 = utils.reduce_tensor(acc1, args.world_size)
                acc5 = utils.reduce_tensor(acc5, args.world_size)
            else:
                reduced_loss = loss.data

            if device.type == 'cuda':
                torch.cuda.synchronize()

            losses_m.update(reduced_loss.item(), input.size(0))
            top1_m.update(acc1.item(), output.size(0))
            top5_m.update(acc5.item(), output.size(0))

            batch_time_m.update(time.time() - end)
            end = time.time()
            if utils.is_primary(args) and (last_batch or batch_idx % args.log_interval == 0):
                log_name = 'Test' + log_suffix
                _logger.info(
                    f'{log_name}: [{batch_idx:>4d}/{last_idx}]  '
                    f'Time: {batch_time_m.val:.3f} ({batch_time_m.avg:.3f})  '
                    f'Loss: {losses_m.val:>7.3f} ({losses_m.avg:>6.3f})  '
                    f'Acc@1: {top1_m.val:>7.3f} ({top1_m.avg:>7.3f})  '
                    f'Acc@5: {top5_m.val:>7.3f} ({top5_m.avg:>7.3f})'
                )

    metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)])

    return metrics


if __name__ == '__main__':
    main()