pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
5.16 kB
""" PyTorch FX Based Feature Extraction Helpers
Using https://pytorch.org/vision/stable/feature_extraction.html
"""
from typing import Callable, Dict, List, Optional, Union, Tuple, Type
import torch
from torch import nn
from ._features import _get_feature_info, _get_return_layers
try:
from torchvision.models.feature_extraction import create_feature_extractor as _create_feature_extractor
has_fx_feature_extraction = True
except ImportError:
has_fx_feature_extraction = False
# Layers we went to treat as leaf modules
from timm.layers import Conv2dSame, ScaledStdConv2dSame, CondConv2d, StdConv2dSame
from timm.layers.non_local_attn import BilinearAttnTransform
from timm.layers.pool2d_same import MaxPool2dSame, AvgPool2dSame
from timm.layers.norm_act import (
BatchNormAct2d,
SyncBatchNormAct,
FrozenBatchNormAct2d,
GroupNormAct,
GroupNorm1Act,
LayerNormAct,
LayerNormAct2d
)
__all__ = ['register_notrace_module', 'is_notrace_module', 'get_notrace_modules',
'register_notrace_function', 'is_notrace_function', 'get_notrace_functions',
'create_feature_extractor', 'FeatureGraphNet', 'GraphExtractNet']
# NOTE: By default, any modules from timm.models.layers that we want to treat as leaf modules go here
# BUT modules from timm.models should use the registration mechanism below
_leaf_modules = {
BilinearAttnTransform, # reason: flow control t <= 1
# Reason: get_same_padding has a max which raises a control flow error
Conv2dSame, MaxPool2dSame, ScaledStdConv2dSame, StdConv2dSame, AvgPool2dSame,
CondConv2d, # reason: TypeError: F.conv2d received Proxy in groups=self.groups * B (because B = x.shape[0]),
BatchNormAct2d,
SyncBatchNormAct,
FrozenBatchNormAct2d,
GroupNormAct,
GroupNorm1Act,
LayerNormAct,
LayerNormAct2d,
}
try:
from timm.layers import InplaceAbn
_leaf_modules.add(InplaceAbn)
except ImportError:
pass
def register_notrace_module(module: Type[nn.Module]):
"""
Any module not under timm.models.layers should get this decorator if we don't want to trace through it.
"""
_leaf_modules.add(module)
return module
def is_notrace_module(module: Type[nn.Module]):
return module in _leaf_modules
def get_notrace_modules():
return list(_leaf_modules)
# Functions we want to autowrap (treat them as leaves)
_autowrap_functions = set()
def register_notrace_function(func: Callable):
"""
Decorator for functions which ought not to be traced through
"""
_autowrap_functions.add(func)
return func
def is_notrace_function(func: Callable):
return func in _autowrap_functions
def get_notrace_functions():
return list(_autowrap_functions)
def create_feature_extractor(model: nn.Module, return_nodes: Union[Dict[str, str], List[str]]):
assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction'
return _create_feature_extractor(
model, return_nodes,
tracer_kwargs={'leaf_modules': list(_leaf_modules), 'autowrap_functions': list(_autowrap_functions)}
)
class FeatureGraphNet(nn.Module):
""" A FX Graph based feature extractor that works with the model feature_info metadata
"""
def __init__(
self,
model: nn.Module,
out_indices: Tuple[int, ...],
out_map: Optional[Dict] = None,
):
super().__init__()
assert has_fx_feature_extraction, 'Please update to PyTorch 1.10+, torchvision 0.11+ for FX feature extraction'
self.feature_info = _get_feature_info(model, out_indices)
if out_map is not None:
assert len(out_map) == len(out_indices)
return_nodes = _get_return_layers(self.feature_info, out_map)
self.graph_module = create_feature_extractor(model, return_nodes)
def forward(self, x):
return list(self.graph_module(x).values())
class GraphExtractNet(nn.Module):
""" A standalone feature extraction wrapper that maps dict -> list or single tensor
NOTE:
* one can use feature_extractor directly if dictionary output is desired
* unlike FeatureGraphNet, this is intended to be used standalone and not with model feature_info
metadata for builtin feature extraction mode
* create_feature_extractor can be used directly if dictionary output is acceptable
Args:
model: model to extract features from
return_nodes: node names to return features from (dict or list)
squeeze_out: if only one output, and output in list format, flatten to single tensor
"""
def __init__(
self,
model: nn.Module,
return_nodes: Union[Dict[str, str], List[str]],
squeeze_out: bool = True,
):
super().__init__()
self.squeeze_out = squeeze_out
self.graph_module = create_feature_extractor(model, return_nodes)
def forward(self, x) -> Union[List[torch.Tensor], torch.Tensor]:
out = list(self.graph_module(x).values())
if self.squeeze_out and len(out) == 1:
return out[0]
return out