|
""" Class-Attention in Image Transformers (CaiT) |
|
|
|
Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239 |
|
|
|
Original code and weights from https://github.com/facebookresearch/deit, copyright below |
|
|
|
Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman |
|
""" |
|
|
|
|
|
from functools import partial |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, use_fused_attn |
|
from ._builder import build_model_with_cfg |
|
from ._features import feature_take_indices |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
__all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn'] |
|
|
|
|
|
class ClassAttn(nn.Module): |
|
|
|
|
|
fused_attn: torch.jit.Final[bool] |
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.k = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.v = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
if self.fused_attn: |
|
x_cls = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, |
|
dropout_p=self.attn_drop.p if self.training else 0., |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x_cls = attn @ v |
|
|
|
x_cls = x_cls.transpose(1, 2).reshape(B, 1, C) |
|
x_cls = self.proj(x_cls) |
|
x_cls = self.proj_drop(x_cls) |
|
|
|
return x_cls |
|
|
|
|
|
class LayerScaleBlockClassAttn(nn.Module): |
|
|
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
proj_drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
attn_block=ClassAttn, |
|
mlp_block=Mlp, |
|
init_values=1e-4, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = attn_block( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = mlp_block( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x, x_cls): |
|
u = torch.cat((x_cls, x), dim=1) |
|
x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) |
|
x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) |
|
return x_cls |
|
|
|
|
|
class TalkingHeadAttn(nn.Module): |
|
|
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
|
|
self.num_heads = num_heads |
|
|
|
head_dim = dim // num_heads |
|
|
|
self.scale = head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.proj_l = nn.Linear(num_heads, num_heads) |
|
self.proj_w = nn.Linear(num_heads, num_heads) |
|
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] |
|
|
|
attn = q @ k.transpose(-2, -1) |
|
|
|
attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
|
|
attn = attn.softmax(dim=-1) |
|
|
|
attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class LayerScaleBlock(nn.Module): |
|
|
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
proj_drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
attn_block=TalkingHeadAttn, |
|
mlp_block=Mlp, |
|
init_values=1e-4, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = attn_block( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = mlp_block( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class Cait(nn.Module): |
|
|
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='token', |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
drop_rate=0., |
|
pos_drop_rate=0., |
|
proj_drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
block_layers=LayerScaleBlock, |
|
block_layers_token=LayerScaleBlockClassAttn, |
|
patch_layer=PatchEmbed, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
act_layer=nn.GELU, |
|
attn_block=TalkingHeadAttn, |
|
mlp_block=Mlp, |
|
init_values=1e-4, |
|
attn_block_token_only=ClassAttn, |
|
mlp_block_token_only=Mlp, |
|
depth_token_only=2, |
|
mlp_ratio_token_only=4.0 |
|
): |
|
super().__init__() |
|
assert global_pool in ('', 'token', 'avg') |
|
|
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.num_features = self.embed_dim = embed_dim |
|
self.grad_checkpointing = False |
|
|
|
self.patch_embed = patch_layer( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
r = self.patch_embed.feat_ratio() if hasattr(self.patch_embed, 'feat_ratio') else patch_size |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=pos_drop_rate) |
|
|
|
dpr = [drop_path_rate for i in range(depth)] |
|
self.blocks = nn.Sequential(*[block_layers( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
proj_drop=proj_drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
attn_block=attn_block, |
|
mlp_block=mlp_block, |
|
init_values=init_values, |
|
) for i in range(depth)]) |
|
self.feature_info = [dict(num_chs=embed_dim, reduction=r, module=f'blocks.{i}') for i in range(depth)] |
|
|
|
self.blocks_token_only = nn.ModuleList([block_layers_token( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio_token_only, |
|
qkv_bias=qkv_bias, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
attn_block=attn_block_token_only, |
|
mlp_block=mlp_block_token_only, |
|
init_values=init_values, |
|
) for _ in range(depth_token_only)]) |
|
|
|
self.norm = norm_layer(embed_dim) |
|
|
|
self.head_drop = nn.Dropout(drop_rate) |
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
def _matcher(name): |
|
if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]): |
|
return 0 |
|
elif name.startswith('blocks.'): |
|
return int(name.split('.')[1]) + 1 |
|
elif name.startswith('blocks_token_only.'): |
|
|
|
to_offset = len(self.blocks) - len(self.blocks_token_only) + 1 |
|
return int(name.split('.')[1]) + to_offset |
|
elif name.startswith('norm.'): |
|
return len(self.blocks) |
|
else: |
|
return float('inf') |
|
return _matcher |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=None): |
|
self.num_classes = num_classes |
|
if global_pool is not None: |
|
assert global_pool in ('', 'token', 'avg') |
|
self.global_pool = global_pool |
|
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int], Tuple[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = True, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to all intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
""" |
|
assert output_fmt in ('NCHW', 'NLC'), 'Output format for ViT features must be one of NCHW or NLC.' |
|
reshape = output_fmt == 'NCHW' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.blocks), indices) |
|
|
|
|
|
B, _, height, width = x.shape |
|
x = self.patch_embed(x) |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
if torch.jit.is_scripting() or not stop_early: |
|
blocks = self.blocks |
|
else: |
|
blocks = self.blocks[:max_index + 1] |
|
for i, blk in enumerate(blocks): |
|
x = blk(x) |
|
if i in take_indices: |
|
|
|
intermediates.append(self.norm(x) if norm else x) |
|
|
|
|
|
if reshape: |
|
|
|
H, W = self.patch_embed.dynamic_feat_size((height, width)) |
|
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates] |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
|
|
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) |
|
for i, blk in enumerate(self.blocks_token_only): |
|
cls_tokens = blk(x, cls_tokens) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = self.norm(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
n: Union[int, List[int], Tuple[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.blocks), n) |
|
self.blocks = self.blocks[:max_index + 1] |
|
if prune_norm: |
|
self.norm = nn.Identity() |
|
if prune_head: |
|
self.blocks_token_only = nn.ModuleList() |
|
self.head = nn.Identity() |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
x = x + self.pos_embed |
|
x = self.pos_drop(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) |
|
for i, blk in enumerate(self.blocks_token_only): |
|
cls_tokens = blk(x, cls_tokens) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
if self.global_pool: |
|
x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] |
|
x = self.head_drop(x) |
|
return x if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model=None): |
|
if 'model' in state_dict: |
|
state_dict = state_dict['model'] |
|
checkpoint_no_module = {} |
|
for k, v in state_dict.items(): |
|
checkpoint_no_module[k.replace('module.', '')] = v |
|
return checkpoint_no_module |
|
|
|
|
|
def _create_cait(variant, pretrained=False, **kwargs): |
|
out_indices = kwargs.pop('out_indices', 3) |
|
model = build_model_with_cfg( |
|
Cait, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None, |
|
'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'patch_embed.proj', 'classifier': 'head', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'cait_xxs24_224.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth', |
|
input_size=(3, 224, 224), |
|
), |
|
'cait_xxs24_384.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth', |
|
), |
|
'cait_xxs36_224.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth', |
|
input_size=(3, 224, 224), |
|
), |
|
'cait_xxs36_384.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth', |
|
), |
|
'cait_xs24_384.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth', |
|
), |
|
'cait_s24_224.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/S24_224.pth', |
|
input_size=(3, 224, 224), |
|
), |
|
'cait_s24_384.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/S24_384.pth', |
|
), |
|
'cait_s36_384.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/S36_384.pth', |
|
), |
|
'cait_m36_384.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/M36_384.pth', |
|
), |
|
'cait_m48_448.fb_dist_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
url='https://dl.fbaipublicfiles.com/deit/M48_448.pth', |
|
input_size=(3, 448, 448), |
|
), |
|
}) |
|
|
|
|
|
@register_model |
|
def cait_xxs24_224(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5) |
|
model = _create_cait('cait_xxs24_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_xxs24_384(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5) |
|
model = _create_cait('cait_xxs24_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_xxs36_224(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5) |
|
model = _create_cait('cait_xxs36_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_xxs36_384(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5) |
|
model = _create_cait('cait_xxs36_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_xs24_384(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5) |
|
model = _create_cait('cait_xs24_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_s24_224(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5) |
|
model = _create_cait('cait_s24_224', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_s24_384(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5) |
|
model = _create_cait('cait_s24_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_s36_384(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6) |
|
model = _create_cait('cait_s36_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_m36_384(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6) |
|
model = _create_cait('cait_m36_384', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
@register_model |
|
def cait_m48_448(pretrained=False, **kwargs) -> Cait: |
|
model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6) |
|
model = _create_cait('cait_m48_448', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|