pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
30 kB
"""
CoaT architecture.
Paper: Co-Scale Conv-Attentional Image Transformers - https://arxiv.org/abs/2104.06399
Official CoaT code at: https://github.com/mlpc-ucsd/CoaT
Modified from timm/models/vision_transformer.py
"""
from functools import partial
from typing import Tuple, List, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_, _assert, LayerNorm
from ._builder import build_model_with_cfg
from ._registry import register_model, generate_default_cfgs
__all__ = ['CoaT']
class ConvRelPosEnc(nn.Module):
""" Convolutional relative position encoding. """
def __init__(self, head_chs, num_heads, window):
"""
Initialization.
Ch: Channels per head.
h: Number of heads.
window: Window size(s) in convolutional relative positional encoding. It can have two forms:
1. An integer of window size, which assigns all attention heads with the same window s
size in ConvRelPosEnc.
2. A dict mapping window size to #attention head splits (
e.g. {window size 1: #attention head split 1, window size 2: #attention head split 2})
It will apply different window size to the attention head splits.
"""
super().__init__()
if isinstance(window, int):
# Set the same window size for all attention heads.
window = {window: num_heads}
self.window = window
elif isinstance(window, dict):
self.window = window
else:
raise ValueError()
self.conv_list = nn.ModuleList()
self.head_splits = []
for cur_window, cur_head_split in window.items():
dilation = 1
# Determine padding size.
# Ref: https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338
padding_size = (cur_window + (cur_window - 1) * (dilation - 1)) // 2
cur_conv = nn.Conv2d(
cur_head_split * head_chs,
cur_head_split * head_chs,
kernel_size=(cur_window, cur_window),
padding=(padding_size, padding_size),
dilation=(dilation, dilation),
groups=cur_head_split * head_chs,
)
self.conv_list.append(cur_conv)
self.head_splits.append(cur_head_split)
self.channel_splits = [x * head_chs for x in self.head_splits]
def forward(self, q, v, size: Tuple[int, int]):
B, num_heads, N, C = q.shape
H, W = size
_assert(N == 1 + H * W, '')
# Convolutional relative position encoding.
q_img = q[:, :, 1:, :] # [B, h, H*W, Ch]
v_img = v[:, :, 1:, :] # [B, h, H*W, Ch]
v_img = v_img.transpose(-1, -2).reshape(B, num_heads * C, H, W)
v_img_list = torch.split(v_img, self.channel_splits, dim=1) # Split according to channels
conv_v_img_list = []
for i, conv in enumerate(self.conv_list):
conv_v_img_list.append(conv(v_img_list[i]))
conv_v_img = torch.cat(conv_v_img_list, dim=1)
conv_v_img = conv_v_img.reshape(B, num_heads, C, H * W).transpose(-1, -2)
EV_hat = q_img * conv_v_img
EV_hat = F.pad(EV_hat, (0, 0, 1, 0, 0, 0)) # [B, h, N, Ch].
return EV_hat
class FactorAttnConvRelPosEnc(nn.Module):
""" Factorized attention with convolutional relative position encoding class. """
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
attn_drop=0.,
proj_drop=0.,
shared_crpe=None,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop) # Note: attn_drop is actually not used.
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# Shared convolutional relative position encoding.
self.crpe = shared_crpe
def forward(self, x, size: Tuple[int, int]):
B, N, C = x.shape
# Generate Q, K, V.
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # [B, h, N, Ch]
# Factorized attention.
k_softmax = k.softmax(dim=2)
factor_att = k_softmax.transpose(-1, -2) @ v
factor_att = q @ factor_att
# Convolutional relative position encoding.
crpe = self.crpe(q, v, size=size) # [B, h, N, Ch]
# Merge and reshape.
x = self.scale * factor_att + crpe
x = x.transpose(1, 2).reshape(B, N, C) # [B, h, N, Ch] -> [B, N, h, Ch] -> [B, N, C]
# Output projection.
x = self.proj(x)
x = self.proj_drop(x)
return x
class ConvPosEnc(nn.Module):
""" Convolutional Position Encoding.
Note: This module is similar to the conditional position encoding in CPVT.
"""
def __init__(self, dim, k=3):
super(ConvPosEnc, self).__init__()
self.proj = nn.Conv2d(dim, dim, k, 1, k//2, groups=dim)
def forward(self, x, size: Tuple[int, int]):
B, N, C = x.shape
H, W = size
_assert(N == 1 + H * W, '')
# Extract CLS token and image tokens.
cls_token, img_tokens = x[:, :1], x[:, 1:] # [B, 1, C], [B, H*W, C]
# Depthwise convolution.
feat = img_tokens.transpose(1, 2).view(B, C, H, W)
x = self.proj(feat) + feat
x = x.flatten(2).transpose(1, 2)
# Combine with CLS token.
x = torch.cat((cls_token, x), dim=1)
return x
class SerialBlock(nn.Module):
""" Serial block class.
Note: In this implementation, each serial block only contains a conv-attention and a FFN (MLP) module. """
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
shared_cpe=None,
shared_crpe=None,
):
super().__init__()
# Conv-Attention.
self.cpe = shared_cpe
self.norm1 = norm_layer(dim)
self.factoratt_crpe = FactorAttnConvRelPosEnc(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
shared_crpe=shared_crpe,
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# MLP.
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=proj_drop,
)
def forward(self, x, size: Tuple[int, int]):
# Conv-Attention.
x = self.cpe(x, size)
cur = self.norm1(x)
cur = self.factoratt_crpe(cur, size)
x = x + self.drop_path(cur)
# MLP.
cur = self.norm2(x)
cur = self.mlp(cur)
x = x + self.drop_path(cur)
return x
class ParallelBlock(nn.Module):
""" Parallel block class. """
def __init__(
self,
dims,
num_heads,
mlp_ratios=[],
qkv_bias=False,
proj_drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
shared_crpes=None,
):
super().__init__()
# Conv-Attention.
self.norm12 = norm_layer(dims[1])
self.norm13 = norm_layer(dims[2])
self.norm14 = norm_layer(dims[3])
self.factoratt_crpe2 = FactorAttnConvRelPosEnc(
dims[1],
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
shared_crpe=shared_crpes[1],
)
self.factoratt_crpe3 = FactorAttnConvRelPosEnc(
dims[2],
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
shared_crpe=shared_crpes[2],
)
self.factoratt_crpe4 = FactorAttnConvRelPosEnc(
dims[3],
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
shared_crpe=shared_crpes[3],
)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
# MLP.
self.norm22 = norm_layer(dims[1])
self.norm23 = norm_layer(dims[2])
self.norm24 = norm_layer(dims[3])
# In parallel block, we assume dimensions are the same and share the linear transformation.
assert dims[1] == dims[2] == dims[3]
assert mlp_ratios[1] == mlp_ratios[2] == mlp_ratios[3]
mlp_hidden_dim = int(dims[1] * mlp_ratios[1])
self.mlp2 = self.mlp3 = self.mlp4 = Mlp(
in_features=dims[1],
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=proj_drop,
)
def upsample(self, x, factor: float, size: Tuple[int, int]):
""" Feature map up-sampling. """
return self.interpolate(x, scale_factor=factor, size=size)
def downsample(self, x, factor: float, size: Tuple[int, int]):
""" Feature map down-sampling. """
return self.interpolate(x, scale_factor=1.0/factor, size=size)
def interpolate(self, x, scale_factor: float, size: Tuple[int, int]):
""" Feature map interpolation. """
B, N, C = x.shape
H, W = size
_assert(N == 1 + H * W, '')
cls_token = x[:, :1, :]
img_tokens = x[:, 1:, :]
img_tokens = img_tokens.transpose(1, 2).reshape(B, C, H, W)
img_tokens = F.interpolate(
img_tokens,
scale_factor=scale_factor,
recompute_scale_factor=False,
mode='bilinear',
align_corners=False,
)
img_tokens = img_tokens.reshape(B, C, -1).transpose(1, 2)
out = torch.cat((cls_token, img_tokens), dim=1)
return out
def forward(self, x1, x2, x3, x4, sizes: List[Tuple[int, int]]):
_, S2, S3, S4 = sizes
cur2 = self.norm12(x2)
cur3 = self.norm13(x3)
cur4 = self.norm14(x4)
cur2 = self.factoratt_crpe2(cur2, size=S2)
cur3 = self.factoratt_crpe3(cur3, size=S3)
cur4 = self.factoratt_crpe4(cur4, size=S4)
upsample3_2 = self.upsample(cur3, factor=2., size=S3)
upsample4_3 = self.upsample(cur4, factor=2., size=S4)
upsample4_2 = self.upsample(cur4, factor=4., size=S4)
downsample2_3 = self.downsample(cur2, factor=2., size=S2)
downsample3_4 = self.downsample(cur3, factor=2., size=S3)
downsample2_4 = self.downsample(cur2, factor=4., size=S2)
cur2 = cur2 + upsample3_2 + upsample4_2
cur3 = cur3 + upsample4_3 + downsample2_3
cur4 = cur4 + downsample3_4 + downsample2_4
x2 = x2 + self.drop_path(cur2)
x3 = x3 + self.drop_path(cur3)
x4 = x4 + self.drop_path(cur4)
# MLP.
cur2 = self.norm22(x2)
cur3 = self.norm23(x3)
cur4 = self.norm24(x4)
cur2 = self.mlp2(cur2)
cur3 = self.mlp3(cur3)
cur4 = self.mlp4(cur4)
x2 = x2 + self.drop_path(cur2)
x3 = x3 + self.drop_path(cur3)
x4 = x4 + self.drop_path(cur4)
return x1, x2, x3, x4
class CoaT(nn.Module):
""" CoaT class. """
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dims=(64, 128, 320, 512),
serial_depths=(3, 4, 6, 3),
parallel_depth=0,
num_heads=8,
mlp_ratios=(4, 4, 4, 4),
qkv_bias=True,
drop_rate=0.,
proj_drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=LayerNorm,
return_interm_layers=False,
out_features=None,
crpe_window=None,
global_pool='token',
):
super().__init__()
assert global_pool in ('token', 'avg')
crpe_window = crpe_window or {3: 2, 5: 3, 7: 3}
self.return_interm_layers = return_interm_layers
self.out_features = out_features
self.embed_dims = embed_dims
self.num_features = embed_dims[-1]
self.num_classes = num_classes
self.global_pool = global_pool
# Patch embeddings.
img_size = to_2tuple(img_size)
self.patch_embed1 = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans,
embed_dim=embed_dims[0], norm_layer=nn.LayerNorm)
self.patch_embed2 = PatchEmbed(
img_size=[x // 4 for x in img_size], patch_size=2, in_chans=embed_dims[0],
embed_dim=embed_dims[1], norm_layer=nn.LayerNorm)
self.patch_embed3 = PatchEmbed(
img_size=[x // 8 for x in img_size], patch_size=2, in_chans=embed_dims[1],
embed_dim=embed_dims[2], norm_layer=nn.LayerNorm)
self.patch_embed4 = PatchEmbed(
img_size=[x // 16 for x in img_size], patch_size=2, in_chans=embed_dims[2],
embed_dim=embed_dims[3], norm_layer=nn.LayerNorm)
# Class tokens.
self.cls_token1 = nn.Parameter(torch.zeros(1, 1, embed_dims[0]))
self.cls_token2 = nn.Parameter(torch.zeros(1, 1, embed_dims[1]))
self.cls_token3 = nn.Parameter(torch.zeros(1, 1, embed_dims[2]))
self.cls_token4 = nn.Parameter(torch.zeros(1, 1, embed_dims[3]))
# Convolutional position encodings.
self.cpe1 = ConvPosEnc(dim=embed_dims[0], k=3)
self.cpe2 = ConvPosEnc(dim=embed_dims[1], k=3)
self.cpe3 = ConvPosEnc(dim=embed_dims[2], k=3)
self.cpe4 = ConvPosEnc(dim=embed_dims[3], k=3)
# Convolutional relative position encodings.
self.crpe1 = ConvRelPosEnc(head_chs=embed_dims[0] // num_heads, num_heads=num_heads, window=crpe_window)
self.crpe2 = ConvRelPosEnc(head_chs=embed_dims[1] // num_heads, num_heads=num_heads, window=crpe_window)
self.crpe3 = ConvRelPosEnc(head_chs=embed_dims[2] // num_heads, num_heads=num_heads, window=crpe_window)
self.crpe4 = ConvRelPosEnc(head_chs=embed_dims[3] // num_heads, num_heads=num_heads, window=crpe_window)
# Disable stochastic depth.
dpr = drop_path_rate
assert dpr == 0.0
skwargs = dict(
num_heads=num_heads,
qkv_bias=qkv_bias,
proj_drop=proj_drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr,
norm_layer=norm_layer,
)
# Serial blocks 1.
self.serial_blocks1 = nn.ModuleList([
SerialBlock(
dim=embed_dims[0],
mlp_ratio=mlp_ratios[0],
shared_cpe=self.cpe1,
shared_crpe=self.crpe1,
**skwargs,
)
for _ in range(serial_depths[0])]
)
# Serial blocks 2.
self.serial_blocks2 = nn.ModuleList([
SerialBlock(
dim=embed_dims[1],
mlp_ratio=mlp_ratios[1],
shared_cpe=self.cpe2,
shared_crpe=self.crpe2,
**skwargs,
)
for _ in range(serial_depths[1])]
)
# Serial blocks 3.
self.serial_blocks3 = nn.ModuleList([
SerialBlock(
dim=embed_dims[2],
mlp_ratio=mlp_ratios[2],
shared_cpe=self.cpe3,
shared_crpe=self.crpe3,
**skwargs,
)
for _ in range(serial_depths[2])]
)
# Serial blocks 4.
self.serial_blocks4 = nn.ModuleList([
SerialBlock(
dim=embed_dims[3],
mlp_ratio=mlp_ratios[3],
shared_cpe=self.cpe4,
shared_crpe=self.crpe4,
**skwargs,
)
for _ in range(serial_depths[3])]
)
# Parallel blocks.
self.parallel_depth = parallel_depth
if self.parallel_depth > 0:
self.parallel_blocks = nn.ModuleList([
ParallelBlock(
dims=embed_dims,
mlp_ratios=mlp_ratios,
shared_crpes=(self.crpe1, self.crpe2, self.crpe3, self.crpe4),
**skwargs,
)
for _ in range(parallel_depth)]
)
else:
self.parallel_blocks = None
# Classification head(s).
if not self.return_interm_layers:
if self.parallel_blocks is not None:
self.norm2 = norm_layer(embed_dims[1])
self.norm3 = norm_layer(embed_dims[2])
else:
self.norm2 = self.norm3 = None
self.norm4 = norm_layer(embed_dims[3])
if self.parallel_depth > 0:
# CoaT series: Aggregate features of last three scales for classification.
assert embed_dims[1] == embed_dims[2] == embed_dims[3]
self.aggregate = torch.nn.Conv1d(in_channels=3, out_channels=1, kernel_size=1)
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
else:
# CoaT-Lite series: Use feature of last scale for classification.
self.aggregate = None
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
# Initialize weights.
trunc_normal_(self.cls_token1, std=.02)
trunc_normal_(self.cls_token2, std=.02)
trunc_normal_(self.cls_token3, std=.02)
trunc_normal_(self.cls_token4, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'cls_token1', 'cls_token2', 'cls_token3', 'cls_token4'}
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
assert not enable, 'gradient checkpointing not supported'
@torch.jit.ignore
def group_matcher(self, coarse=False):
matcher = dict(
stem1=r'^cls_token1|patch_embed1|crpe1|cpe1',
serial_blocks1=r'^serial_blocks1\.(\d+)',
stem2=r'^cls_token2|patch_embed2|crpe2|cpe2',
serial_blocks2=r'^serial_blocks2\.(\d+)',
stem3=r'^cls_token3|patch_embed3|crpe3|cpe3',
serial_blocks3=r'^serial_blocks3\.(\d+)',
stem4=r'^cls_token4|patch_embed4|crpe4|cpe4',
serial_blocks4=r'^serial_blocks4\.(\d+)',
parallel_blocks=[ # FIXME (partially?) overlap parallel w/ serial blocks??
(r'^parallel_blocks\.(\d+)', None),
(r'^norm|aggregate', (99999,)),
]
)
return matcher
@torch.jit.ignore
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=None):
self.num_classes = num_classes
if global_pool is not None:
assert global_pool in ('token', 'avg')
self.global_pool = global_pool
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x0):
B = x0.shape[0]
# Serial blocks 1.
x1 = self.patch_embed1(x0)
H1, W1 = self.patch_embed1.grid_size
x1 = insert_cls(x1, self.cls_token1)
for blk in self.serial_blocks1:
x1 = blk(x1, size=(H1, W1))
x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous()
# Serial blocks 2.
x2 = self.patch_embed2(x1_nocls)
H2, W2 = self.patch_embed2.grid_size
x2 = insert_cls(x2, self.cls_token2)
for blk in self.serial_blocks2:
x2 = blk(x2, size=(H2, W2))
x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous()
# Serial blocks 3.
x3 = self.patch_embed3(x2_nocls)
H3, W3 = self.patch_embed3.grid_size
x3 = insert_cls(x3, self.cls_token3)
for blk in self.serial_blocks3:
x3 = blk(x3, size=(H3, W3))
x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()
# Serial blocks 4.
x4 = self.patch_embed4(x3_nocls)
H4, W4 = self.patch_embed4.grid_size
x4 = insert_cls(x4, self.cls_token4)
for blk in self.serial_blocks4:
x4 = blk(x4, size=(H4, W4))
x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()
# Only serial blocks: Early return.
if self.parallel_blocks is None:
if not torch.jit.is_scripting() and self.return_interm_layers:
# Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
feat_out = {}
if 'x1_nocls' in self.out_features:
feat_out['x1_nocls'] = x1_nocls
if 'x2_nocls' in self.out_features:
feat_out['x2_nocls'] = x2_nocls
if 'x3_nocls' in self.out_features:
feat_out['x3_nocls'] = x3_nocls
if 'x4_nocls' in self.out_features:
feat_out['x4_nocls'] = x4_nocls
return feat_out
else:
# Return features for classification.
x4 = self.norm4(x4)
return x4
# Parallel blocks.
for blk in self.parallel_blocks:
x2, x3, x4 = self.cpe2(x2, (H2, W2)), self.cpe3(x3, (H3, W3)), self.cpe4(x4, (H4, W4))
x1, x2, x3, x4 = blk(x1, x2, x3, x4, sizes=[(H1, W1), (H2, W2), (H3, W3), (H4, W4)])
if not torch.jit.is_scripting() and self.return_interm_layers:
# Return intermediate features for down-stream tasks (e.g. Deformable DETR and Detectron2).
feat_out = {}
if 'x1_nocls' in self.out_features:
x1_nocls = remove_cls(x1).reshape(B, H1, W1, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x1_nocls'] = x1_nocls
if 'x2_nocls' in self.out_features:
x2_nocls = remove_cls(x2).reshape(B, H2, W2, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x2_nocls'] = x2_nocls
if 'x3_nocls' in self.out_features:
x3_nocls = remove_cls(x3).reshape(B, H3, W3, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x3_nocls'] = x3_nocls
if 'x4_nocls' in self.out_features:
x4_nocls = remove_cls(x4).reshape(B, H4, W4, -1).permute(0, 3, 1, 2).contiguous()
feat_out['x4_nocls'] = x4_nocls
return feat_out
else:
x2 = self.norm2(x2)
x3 = self.norm3(x3)
x4 = self.norm4(x4)
return [x2, x3, x4]
def forward_head(self, x_feat: Union[torch.Tensor, List[torch.Tensor]], pre_logits: bool = False):
if isinstance(x_feat, list):
assert self.aggregate is not None
if self.global_pool == 'avg':
x = torch.cat([xl[:, 1:].mean(dim=1, keepdim=True) for xl in x_feat], dim=1) # [B, 3, C]
else:
x = torch.stack([xl[:, 0] for xl in x_feat], dim=1) # [B, 3, C]
x = self.aggregate(x).squeeze(dim=1) # Shape: [B, C]
else:
x = x_feat[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x_feat[:, 0]
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x) -> torch.Tensor:
if not torch.jit.is_scripting() and self.return_interm_layers:
# Return intermediate features (for down-stream tasks).
return self.forward_features(x)
else:
# Return features for classification.
x_feat = self.forward_features(x)
x = self.forward_head(x_feat)
return x
def insert_cls(x, cls_token):
""" Insert CLS token. """
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
return x
def remove_cls(x):
""" Remove CLS token. """
return x[:, 1:, :]
def checkpoint_filter_fn(state_dict, model):
out_dict = {}
state_dict = state_dict.get('model', state_dict)
for k, v in state_dict.items():
# original model had unused norm layers, removing them requires filtering pretrained checkpoints
if k.startswith('norm1') or \
(k.startswith('norm2') and getattr(model, 'norm2', None) is None) or \
(k.startswith('norm3') and getattr(model, 'norm3', None) is None) or \
(k.startswith('norm4') and getattr(model, 'norm4', None) is None) or \
(k.startswith('aggregate') and getattr(model, 'aggregate', None) is None) or \
(k.startswith('head') and getattr(model, 'head', None) is None):
continue
out_dict[k] = v
return out_dict
def _create_coat(variant, pretrained=False, default_cfg=None, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model = build_model_with_cfg(
CoaT,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs,
)
return model
def _cfg_coat(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed1.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = generate_default_cfgs({
'coat_tiny.in1k': _cfg_coat(hf_hub_id='timm/'),
'coat_mini.in1k': _cfg_coat(hf_hub_id='timm/'),
'coat_small.in1k': _cfg_coat(hf_hub_id='timm/'),
'coat_lite_tiny.in1k': _cfg_coat(hf_hub_id='timm/'),
'coat_lite_mini.in1k': _cfg_coat(hf_hub_id='timm/'),
'coat_lite_small.in1k': _cfg_coat(hf_hub_id='timm/'),
'coat_lite_medium.in1k': _cfg_coat(hf_hub_id='timm/'),
'coat_lite_medium_384.in1k': _cfg_coat(
hf_hub_id='timm/',
input_size=(3, 384, 384), crop_pct=1.0, crop_mode='squash',
),
})
@register_model
def coat_tiny(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6)
model = _create_coat('coat_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model
@register_model
def coat_mini(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
patch_size=4, embed_dims=[152, 216, 216, 216], serial_depths=[2, 2, 2, 2], parallel_depth=6)
model = _create_coat('coat_mini', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model
@register_model
def coat_small(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
patch_size=4, embed_dims=[152, 320, 320, 320], serial_depths=[2, 2, 2, 2], parallel_depth=6, **kwargs)
model = _create_coat('coat_small', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model
@register_model
def coat_lite_tiny(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
patch_size=4, embed_dims=[64, 128, 256, 320], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4])
model = _create_coat('coat_lite_tiny', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model
@register_model
def coat_lite_mini(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[2, 2, 2, 2], mlp_ratios=[8, 8, 4, 4])
model = _create_coat('coat_lite_mini', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model
@register_model
def coat_lite_small(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
patch_size=4, embed_dims=[64, 128, 320, 512], serial_depths=[3, 4, 6, 3], mlp_ratios=[8, 8, 4, 4])
model = _create_coat('coat_lite_small', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model
@register_model
def coat_lite_medium(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8])
model = _create_coat('coat_lite_medium', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model
@register_model
def coat_lite_medium_384(pretrained=False, **kwargs) -> CoaT:
model_cfg = dict(
img_size=384, patch_size=4, embed_dims=[128, 256, 320, 512], serial_depths=[3, 6, 10, 8])
model = _create_coat('coat_lite_medium_384', pretrained=pretrained, **dict(model_cfg, **kwargs))
return model