|
""" EdgeNeXt |
|
|
|
Paper: `EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications` |
|
- https://arxiv.org/abs/2206.10589 |
|
|
|
Original code and weights from https://github.com/mmaaz60/EdgeNeXt |
|
|
|
Modifications and additions for timm by / Copyright 2022, Ross Wightman |
|
""" |
|
import math |
|
from collections import OrderedDict |
|
from functools import partial |
|
from typing import Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, SelectAdaptivePool2d, create_conv2d, \ |
|
use_fused_attn, NormMlpClassifierHead, ClassifierHead |
|
from ._builder import build_model_with_cfg |
|
from ._features_fx import register_notrace_module |
|
from ._manipulate import named_apply, checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
__all__ = ['EdgeNeXt'] |
|
|
|
|
|
@register_notrace_module |
|
class PositionalEncodingFourier(nn.Module): |
|
def __init__(self, hidden_dim=32, dim=768, temperature=10000): |
|
super().__init__() |
|
self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) |
|
self.scale = 2 * math.pi |
|
self.temperature = temperature |
|
self.hidden_dim = hidden_dim |
|
self.dim = dim |
|
|
|
def forward(self, shape: Tuple[int, int, int]): |
|
device = self.token_projection.weight.device |
|
dtype = self.token_projection.weight.dtype |
|
inv_mask = ~torch.zeros(shape).to(device=device, dtype=torch.bool) |
|
y_embed = inv_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = inv_mask.cumsum(2, dtype=torch.float32) |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.hidden_dim, dtype=torch.int64, device=device).to(torch.float32) |
|
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), |
|
pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), |
|
pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
pos = self.token_projection(pos.to(dtype)) |
|
|
|
return pos |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
dim_out=None, |
|
kernel_size=7, |
|
stride=1, |
|
conv_bias=True, |
|
expand_ratio=4, |
|
ls_init_value=1e-6, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
act_layer=nn.GELU, drop_path=0., |
|
): |
|
super().__init__() |
|
dim_out = dim_out or dim |
|
self.shortcut_after_dw = stride > 1 or dim != dim_out |
|
|
|
self.conv_dw = create_conv2d( |
|
dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias) |
|
self.norm = norm_layer(dim_out) |
|
self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer) |
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv_dw(x) |
|
if self.shortcut_after_dw: |
|
shortcut = x |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = shortcut + self.drop_path(x) |
|
return x |
|
|
|
|
|
class CrossCovarianceAttn(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
attn_drop=0., |
|
proj_drop=0. |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 4, 1) |
|
q, k, v = qkv.unbind(0) |
|
|
|
|
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) * self.temperature |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = (attn @ v) |
|
|
|
x = x.permute(0, 3, 1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'temperature'} |
|
|
|
|
|
class SplitTransposeBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_scales=1, |
|
num_heads=8, |
|
expand_ratio=4, |
|
use_pos_emb=True, |
|
conv_bias=True, |
|
qkv_bias=True, |
|
ls_init_value=1e-6, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
act_layer=nn.GELU, |
|
drop_path=0., |
|
attn_drop=0., |
|
proj_drop=0. |
|
): |
|
super().__init__() |
|
width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales))) |
|
self.width = width |
|
self.num_scales = max(1, num_scales - 1) |
|
|
|
convs = [] |
|
for i in range(self.num_scales): |
|
convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias)) |
|
self.convs = nn.ModuleList(convs) |
|
|
|
self.pos_embd = None |
|
if use_pos_emb: |
|
self.pos_embd = PositionalEncodingFourier(dim=dim) |
|
self.norm_xca = norm_layer(dim) |
|
self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None |
|
self.xca = CrossCovarianceAttn( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) |
|
|
|
self.norm = norm_layer(dim, eps=1e-6) |
|
self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer) |
|
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
|
|
|
|
|
|
spx = x.chunk(len(self.convs) + 1, dim=1) |
|
spo = [] |
|
sp = spx[0] |
|
for i, conv in enumerate(self.convs): |
|
if i > 0: |
|
sp = sp + spx[i] |
|
sp = conv(sp) |
|
spo.append(sp) |
|
spo.append(spx[-1]) |
|
x = torch.cat(spo, 1) |
|
|
|
|
|
B, C, H, W = x.shape |
|
x = x.reshape(B, C, H * W).permute(0, 2, 1) |
|
if self.pos_embd is not None: |
|
pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1) |
|
x = x + pos_encoding |
|
x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x))) |
|
x = x.reshape(B, H, W, C) |
|
|
|
|
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
if self.gamma is not None: |
|
x = self.gamma * x |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = shortcut + self.drop_path(x) |
|
return x |
|
|
|
|
|
class EdgeNeXtStage(nn.Module): |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
stride=2, |
|
depth=2, |
|
num_global_blocks=1, |
|
num_heads=4, |
|
scales=2, |
|
kernel_size=7, |
|
expand_ratio=4, |
|
use_pos_emb=False, |
|
downsample_block=False, |
|
conv_bias=True, |
|
ls_init_value=1.0, |
|
drop_path_rates=None, |
|
norm_layer=LayerNorm2d, |
|
norm_layer_cl=partial(nn.LayerNorm, eps=1e-6), |
|
act_layer=nn.GELU |
|
): |
|
super().__init__() |
|
self.grad_checkpointing = False |
|
|
|
if downsample_block or stride == 1: |
|
self.downsample = nn.Identity() |
|
else: |
|
self.downsample = nn.Sequential( |
|
norm_layer(in_chs), |
|
nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias) |
|
) |
|
in_chs = out_chs |
|
|
|
stage_blocks = [] |
|
for i in range(depth): |
|
if i < depth - num_global_blocks: |
|
stage_blocks.append( |
|
ConvBlock( |
|
dim=in_chs, |
|
dim_out=out_chs, |
|
stride=stride if downsample_block and i == 0 else 1, |
|
conv_bias=conv_bias, |
|
kernel_size=kernel_size, |
|
expand_ratio=expand_ratio, |
|
ls_init_value=ls_init_value, |
|
drop_path=drop_path_rates[i], |
|
norm_layer=norm_layer_cl, |
|
act_layer=act_layer, |
|
) |
|
) |
|
else: |
|
stage_blocks.append( |
|
SplitTransposeBlock( |
|
dim=in_chs, |
|
num_scales=scales, |
|
num_heads=num_heads, |
|
expand_ratio=expand_ratio, |
|
use_pos_emb=use_pos_emb, |
|
conv_bias=conv_bias, |
|
ls_init_value=ls_init_value, |
|
drop_path=drop_path_rates[i], |
|
norm_layer=norm_layer_cl, |
|
act_layer=act_layer, |
|
) |
|
) |
|
in_chs = out_chs |
|
self.blocks = nn.Sequential(*stage_blocks) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class EdgeNeXt(nn.Module): |
|
def __init__( |
|
self, |
|
in_chans=3, |
|
num_classes=1000, |
|
global_pool='avg', |
|
dims=(24, 48, 88, 168), |
|
depths=(3, 3, 9, 3), |
|
global_block_counts=(0, 1, 1, 1), |
|
kernel_sizes=(3, 5, 7, 9), |
|
heads=(8, 8, 8, 8), |
|
d2_scales=(2, 2, 3, 4), |
|
use_pos_emb=(False, True, False, False), |
|
ls_init_value=1e-6, |
|
head_init_scale=1., |
|
expand_ratio=4, |
|
downsample_block=False, |
|
conv_bias=True, |
|
stem_type='patch', |
|
head_norm_first=False, |
|
act_layer=nn.GELU, |
|
drop_path_rate=0., |
|
drop_rate=0., |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.global_pool = global_pool |
|
self.drop_rate = drop_rate |
|
norm_layer = partial(LayerNorm2d, eps=1e-6) |
|
norm_layer_cl = partial(nn.LayerNorm, eps=1e-6) |
|
self.feature_info = [] |
|
|
|
assert stem_type in ('patch', 'overlap') |
|
if stem_type == 'patch': |
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias), |
|
norm_layer(dims[0]), |
|
) |
|
else: |
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias), |
|
norm_layer(dims[0]), |
|
) |
|
|
|
curr_stride = 4 |
|
stages = [] |
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
in_chs = dims[0] |
|
for i in range(4): |
|
stride = 2 if curr_stride == 2 or i > 0 else 1 |
|
|
|
curr_stride *= stride |
|
stages.append(EdgeNeXtStage( |
|
in_chs=in_chs, |
|
out_chs=dims[i], |
|
stride=stride, |
|
depth=depths[i], |
|
num_global_blocks=global_block_counts[i], |
|
num_heads=heads[i], |
|
drop_path_rates=dp_rates[i], |
|
scales=d2_scales[i], |
|
expand_ratio=expand_ratio, |
|
kernel_size=kernel_sizes[i], |
|
use_pos_emb=use_pos_emb[i], |
|
ls_init_value=ls_init_value, |
|
downsample_block=downsample_block, |
|
conv_bias=conv_bias, |
|
norm_layer=norm_layer, |
|
norm_layer_cl=norm_layer_cl, |
|
act_layer=act_layer, |
|
)) |
|
|
|
in_chs = dims[i] |
|
self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')] |
|
|
|
self.stages = nn.Sequential(*stages) |
|
|
|
self.num_features = dims[-1] |
|
if head_norm_first: |
|
self.norm_pre = norm_layer(self.num_features) |
|
self.head = ClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
) |
|
else: |
|
self.norm_pre = nn.Identity() |
|
self.head = NormMlpClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+)\.downsample', (0,)), |
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None), |
|
(r'^norm_pre', (99999,)) |
|
] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes=0, global_pool=None): |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
x = self.norm_pre(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=True) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _init_weights(module, name=None, head_init_scale=1.0): |
|
if isinstance(module, nn.Conv2d): |
|
trunc_normal_tf_(module.weight, std=.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Linear): |
|
trunc_normal_tf_(module.weight, std=.02) |
|
nn.init.zeros_(module.bias) |
|
if name and 'head.' in name: |
|
module.weight.data.mul_(head_init_scale) |
|
module.bias.data.mul_(head_init_scale) |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" Remap FB checkpoints -> timm """ |
|
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: |
|
return state_dict |
|
|
|
|
|
if 'model_ema' in state_dict: |
|
state_dict = state_dict['model_ema'] |
|
elif 'model' in state_dict: |
|
state_dict = state_dict['model'] |
|
elif 'state_dict' in state_dict: |
|
state_dict = state_dict['state_dict'] |
|
|
|
out_dict = {} |
|
import re |
|
for k, v in state_dict.items(): |
|
k = k.replace('downsample_layers.0.', 'stem.') |
|
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) |
|
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) |
|
k = k.replace('dwconv', 'conv_dw') |
|
k = k.replace('pwconv', 'mlp.fc') |
|
k = k.replace('head.', 'head.fc.') |
|
if k.startswith('norm.'): |
|
k = k.replace('norm', 'head.norm') |
|
if v.ndim == 2 and 'head' not in k: |
|
model_shape = model.state_dict()[k].shape |
|
v = v.reshape(model_shape) |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_edgenext(variant, pretrained=False, **kwargs): |
|
model = build_model_with_cfg( |
|
EdgeNeXt, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), |
|
**kwargs) |
|
return model |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), |
|
'crop_pct': 0.9, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'stem.0', 'classifier': 'head.fc', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'edgenext_xx_small.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'edgenext_x_small.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 288, 288), test_crop_pct=1.0), |
|
'edgenext_small.usi_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, |
|
), |
|
'edgenext_base.usi_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, |
|
), |
|
'edgenext_base.in21k_ft_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, |
|
), |
|
'edgenext_small_rw.sw_in1k': _cfg( |
|
hf_hub_id='timm/', |
|
test_input_size=(3, 320, 320), test_crop_pct=1.0, |
|
), |
|
}) |
|
|
|
|
|
@register_model |
|
def edgenext_xx_small(pretrained=False, **kwargs) -> EdgeNeXt: |
|
|
|
|
|
|
|
|
|
|
|
model_args = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4)) |
|
return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def edgenext_x_small(pretrained=False, **kwargs) -> EdgeNeXt: |
|
|
|
|
|
|
|
|
|
|
|
model_args = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4)) |
|
return _create_edgenext('edgenext_x_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def edgenext_small(pretrained=False, **kwargs) -> EdgeNeXt: |
|
|
|
|
|
|
|
|
|
|
|
model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304)) |
|
return _create_edgenext('edgenext_small', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def edgenext_base(pretrained=False, **kwargs) -> EdgeNeXt: |
|
|
|
|
|
|
|
|
|
|
|
model_args = dict(depths=[3, 3, 9, 3], dims=[80, 160, 288, 584]) |
|
return _create_edgenext('edgenext_base', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|
|
@register_model |
|
def edgenext_small_rw(pretrained=False, **kwargs) -> EdgeNeXt: |
|
model_args = dict( |
|
depths=(3, 3, 9, 3), dims=(48, 96, 192, 384), |
|
downsample_block=True, conv_bias=False, stem_type='overlap') |
|
return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
|
|
|