|
""" |
|
An implementation of GhostNet & GhostNetV2 Models as defined in: |
|
GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 |
|
GhostNetV2: Enhance Cheap Operation with Long-Range Attention. https://proceedings.neurips.cc/paper_files/paper/2022/file/40b60852a4abdaa696b5a1a78da34635-Paper-Conference.pdf |
|
|
|
The train script & code of models at: |
|
Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch |
|
Original model: https://github.com/huawei-noah/Efficient-AI-Backbones/blob/master/ghostnetv2_pytorch/model/ghostnetv2_torch.py |
|
""" |
|
import math |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import SelectAdaptivePool2d, Linear, make_divisible |
|
from ._builder import build_model_with_cfg |
|
from ._efficientnet_blocks import SqueezeExcite, ConvBnAct |
|
from ._manipulate import checkpoint_seq |
|
from ._registry import register_model, generate_default_cfgs |
|
|
|
__all__ = ['GhostNet'] |
|
|
|
|
|
_SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) |
|
|
|
|
|
class GhostModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
kernel_size=1, |
|
ratio=2, |
|
dw_size=3, |
|
stride=1, |
|
use_act=True, |
|
act_layer=nn.ReLU, |
|
): |
|
super(GhostModule, self).__init__() |
|
self.out_chs = out_chs |
|
init_chs = math.ceil(out_chs / ratio) |
|
new_chs = init_chs * (ratio - 1) |
|
|
|
self.primary_conv = nn.Sequential( |
|
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), |
|
nn.BatchNorm2d(init_chs), |
|
act_layer(inplace=True) if use_act else nn.Identity(), |
|
) |
|
|
|
self.cheap_operation = nn.Sequential( |
|
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), |
|
nn.BatchNorm2d(new_chs), |
|
act_layer(inplace=True) if use_act else nn.Identity(), |
|
) |
|
|
|
def forward(self, x): |
|
x1 = self.primary_conv(x) |
|
x2 = self.cheap_operation(x1) |
|
out = torch.cat([x1, x2], dim=1) |
|
return out[:, :self.out_chs, :, :] |
|
|
|
|
|
class GhostModuleV2(nn.Module): |
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
kernel_size=1, |
|
ratio=2, |
|
dw_size=3, |
|
stride=1, |
|
use_act=True, |
|
act_layer=nn.ReLU, |
|
): |
|
super().__init__() |
|
self.gate_fn = nn.Sigmoid() |
|
self.out_chs = out_chs |
|
init_chs = math.ceil(out_chs / ratio) |
|
new_chs = init_chs * (ratio - 1) |
|
self.primary_conv = nn.Sequential( |
|
nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), |
|
nn.BatchNorm2d(init_chs), |
|
act_layer(inplace=True) if use_act else nn.Identity(), |
|
) |
|
self.cheap_operation = nn.Sequential( |
|
nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size // 2, groups=init_chs, bias=False), |
|
nn.BatchNorm2d(new_chs), |
|
act_layer(inplace=True) if use_act else nn.Identity(), |
|
) |
|
self.short_conv = nn.Sequential( |
|
nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False), |
|
nn.BatchNorm2d(out_chs), |
|
nn.Conv2d(out_chs, out_chs, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=out_chs, bias=False), |
|
nn.BatchNorm2d(out_chs), |
|
nn.Conv2d(out_chs, out_chs, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=out_chs, bias=False), |
|
nn.BatchNorm2d(out_chs), |
|
) |
|
|
|
def forward(self, x): |
|
res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2)) |
|
x1 = self.primary_conv(x) |
|
x2 = self.cheap_operation(x1) |
|
out = torch.cat([x1, x2], dim=1) |
|
return out[:, :self.out_chs, :, :] * F.interpolate( |
|
self.gate_fn(res), size=(out.shape[-2], out.shape[-1]), mode='nearest') |
|
|
|
|
|
class GhostBottleneck(nn.Module): |
|
""" Ghost bottleneck w/ optional SE""" |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
mid_chs, |
|
out_chs, |
|
dw_kernel_size=3, |
|
stride=1, |
|
act_layer=nn.ReLU, |
|
se_ratio=0., |
|
mode='original', |
|
): |
|
super(GhostBottleneck, self).__init__() |
|
has_se = se_ratio is not None and se_ratio > 0. |
|
self.stride = stride |
|
|
|
|
|
if mode == 'original': |
|
self.ghost1 = GhostModule(in_chs, mid_chs, use_act=True, act_layer=act_layer) |
|
else: |
|
self.ghost1 = GhostModuleV2(in_chs, mid_chs, use_act=True, act_layer=act_layer) |
|
|
|
|
|
if self.stride > 1: |
|
self.conv_dw = nn.Conv2d( |
|
mid_chs, mid_chs, dw_kernel_size, stride=stride, |
|
padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) |
|
self.bn_dw = nn.BatchNorm2d(mid_chs) |
|
else: |
|
self.conv_dw = None |
|
self.bn_dw = None |
|
|
|
|
|
self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None |
|
|
|
|
|
self.ghost2 = GhostModule(mid_chs, out_chs, use_act=False) |
|
|
|
|
|
if in_chs == out_chs and self.stride == 1: |
|
self.shortcut = nn.Sequential() |
|
else: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d( |
|
in_chs, in_chs, dw_kernel_size, stride=stride, |
|
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), |
|
nn.BatchNorm2d(in_chs), |
|
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), |
|
nn.BatchNorm2d(out_chs), |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
|
|
|
|
x = self.ghost1(x) |
|
|
|
|
|
if self.conv_dw is not None: |
|
x = self.conv_dw(x) |
|
x = self.bn_dw(x) |
|
|
|
|
|
if self.se is not None: |
|
x = self.se(x) |
|
|
|
|
|
x = self.ghost2(x) |
|
|
|
x += self.shortcut(shortcut) |
|
return x |
|
|
|
|
|
class GhostNet(nn.Module): |
|
def __init__( |
|
self, |
|
cfgs, |
|
num_classes=1000, |
|
width=1.0, |
|
in_chans=3, |
|
output_stride=32, |
|
global_pool='avg', |
|
drop_rate=0.2, |
|
version='v1', |
|
): |
|
super(GhostNet, self).__init__() |
|
|
|
assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' |
|
self.cfgs = cfgs |
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
self.grad_checkpointing = False |
|
self.feature_info = [] |
|
|
|
|
|
stem_chs = make_divisible(16 * width, 4) |
|
self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) |
|
self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) |
|
self.bn1 = nn.BatchNorm2d(stem_chs) |
|
self.act1 = nn.ReLU(inplace=True) |
|
prev_chs = stem_chs |
|
|
|
|
|
stages = nn.ModuleList([]) |
|
stage_idx = 0 |
|
layer_idx = 0 |
|
net_stride = 2 |
|
for cfg in self.cfgs: |
|
layers = [] |
|
s = 1 |
|
for k, exp_size, c, se_ratio, s in cfg: |
|
out_chs = make_divisible(c * width, 4) |
|
mid_chs = make_divisible(exp_size * width, 4) |
|
layer_kwargs = {} |
|
if version == 'v2' and layer_idx > 1: |
|
layer_kwargs['mode'] = 'attn' |
|
layers.append(GhostBottleneck(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, **layer_kwargs)) |
|
prev_chs = out_chs |
|
layer_idx += 1 |
|
if s > 1: |
|
net_stride *= 2 |
|
self.feature_info.append(dict( |
|
num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) |
|
stages.append(nn.Sequential(*layers)) |
|
stage_idx += 1 |
|
|
|
out_chs = make_divisible(exp_size * width, 4) |
|
stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) |
|
self.pool_dim = prev_chs = out_chs |
|
|
|
self.blocks = nn.Sequential(*stages) |
|
|
|
|
|
self.num_features = out_chs = 1280 |
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) |
|
self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) |
|
self.act2 = nn.ReLU(inplace=True) |
|
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() |
|
self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
|
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
matcher = dict( |
|
stem=r'^conv_stem|bn1', |
|
blocks=[ |
|
(r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), |
|
(r'conv_head', (99999,)) |
|
] |
|
) |
|
return matcher |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self): |
|
return self.classifier |
|
|
|
def reset_classifier(self, num_classes, global_pool='avg'): |
|
self.num_classes = num_classes |
|
|
|
self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) |
|
self.flatten = nn.Flatten(1) if global_pool else nn.Identity() |
|
self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
x = self.conv_stem(x) |
|
x = self.bn1(x) |
|
x = self.act1(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x, flatten=True) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
def forward_head(self, x): |
|
x = self.global_pool(x) |
|
x = self.conv_head(x) |
|
x = self.act2(x) |
|
x = self.flatten(x) |
|
if self.drop_rate > 0.: |
|
x = F.dropout(x, p=self.drop_rate, training=self.training) |
|
x = self.classifier(x) |
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model: nn.Module): |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'total' in k: |
|
continue |
|
out_dict[k] = v |
|
return out_dict |
|
|
|
|
|
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): |
|
""" |
|
Constructs a GhostNet model |
|
""" |
|
cfgs = [ |
|
|
|
|
|
[[3, 16, 16, 0, 1]], |
|
|
|
[[3, 48, 24, 0, 2]], |
|
[[3, 72, 24, 0, 1]], |
|
|
|
[[5, 72, 40, 0.25, 2]], |
|
[[5, 120, 40, 0.25, 1]], |
|
|
|
[[3, 240, 80, 0, 2]], |
|
[[3, 200, 80, 0, 1], |
|
[3, 184, 80, 0, 1], |
|
[3, 184, 80, 0, 1], |
|
[3, 480, 112, 0.25, 1], |
|
[3, 672, 112, 0.25, 1] |
|
], |
|
|
|
[[5, 672, 160, 0.25, 2]], |
|
[[5, 960, 160, 0, 1], |
|
[5, 960, 160, 0.25, 1], |
|
[5, 960, 160, 0, 1], |
|
[5, 960, 160, 0.25, 1] |
|
] |
|
] |
|
model_kwargs = dict( |
|
cfgs=cfgs, |
|
width=width, |
|
**kwargs, |
|
) |
|
return build_model_with_cfg( |
|
GhostNet, |
|
variant, |
|
pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(flatten_sequential=True), |
|
**model_kwargs, |
|
) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), |
|
'crop_pct': 0.875, 'interpolation': 'bicubic', |
|
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, |
|
'first_conv': 'conv_stem', 'classifier': 'classifier', |
|
**kwargs |
|
} |
|
|
|
|
|
default_cfgs = generate_default_cfgs({ |
|
'ghostnet_050.untrained': _cfg(), |
|
'ghostnet_100.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'ghostnet_130.untrained': _cfg(), |
|
'ghostnetv2_100.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'ghostnetv2_130.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
'ghostnetv2_160.in1k': _cfg( |
|
hf_hub_id='timm/', |
|
|
|
), |
|
}) |
|
|
|
|
|
@register_model |
|
def ghostnet_050(pretrained=False, **kwargs) -> GhostNet: |
|
""" GhostNet-0.5x """ |
|
model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def ghostnet_100(pretrained=False, **kwargs) -> GhostNet: |
|
""" GhostNet-1.0x """ |
|
model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def ghostnet_130(pretrained=False, **kwargs) -> GhostNet: |
|
""" GhostNet-1.3x """ |
|
model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def ghostnetv2_100(pretrained=False, **kwargs) -> GhostNet: |
|
""" GhostNetV2-1.0x """ |
|
model = _create_ghostnet('ghostnetv2_100', width=1.0, pretrained=pretrained, version='v2', **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def ghostnetv2_130(pretrained=False, **kwargs) -> GhostNet: |
|
""" GhostNetV2-1.3x """ |
|
model = _create_ghostnet('ghostnetv2_130', width=1.3, pretrained=pretrained, version='v2', **kwargs) |
|
return model |
|
|
|
|
|
@register_model |
|
def ghostnetv2_160(pretrained=False, **kwargs) -> GhostNet: |
|
""" GhostNetV2-1.6x """ |
|
model = _create_ghostnet('ghostnetv2_160', width=1.6, pretrained=pretrained, version='v2', **kwargs) |
|
return model |
|
|