|
""" |
|
AdamP Optimizer Implementation copied from https://github.com/clovaai/AdamP/blob/master/adamp/adamp.py |
|
|
|
Paper: `Slowing Down the Weight Norm Increase in Momentum-based Optimizers` - https://arxiv.org/abs/2006.08217 |
|
Code: https://github.com/clovaai/AdamP |
|
|
|
Copyright (c) 2020-present NAVER Corp. |
|
MIT license |
|
""" |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.optim.optimizer import Optimizer |
|
import math |
|
|
|
|
|
def _channel_view(x) -> torch.Tensor: |
|
return x.reshape(x.size(0), -1) |
|
|
|
|
|
def _layer_view(x) -> torch.Tensor: |
|
return x.reshape(1, -1) |
|
|
|
|
|
def projection(p, grad, perturb, delta: float, wd_ratio: float, eps: float): |
|
wd = 1. |
|
expand_size = (-1,) + (1,) * (len(p.shape) - 1) |
|
for view_func in [_channel_view, _layer_view]: |
|
param_view = view_func(p) |
|
grad_view = view_func(grad) |
|
cosine_sim = F.cosine_similarity(grad_view, param_view, dim=1, eps=eps).abs_() |
|
|
|
|
|
if cosine_sim.max() < delta / math.sqrt(param_view.size(1)): |
|
p_n = p / param_view.norm(p=2, dim=1).add_(eps).reshape(expand_size) |
|
perturb -= p_n * view_func(p_n * perturb).sum(dim=1).reshape(expand_size) |
|
wd = wd_ratio |
|
return perturb, wd |
|
|
|
return perturb, wd |
|
|
|
|
|
class AdamP(Optimizer): |
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, |
|
weight_decay=0, delta=0.1, wd_ratio=0.1, nesterov=False): |
|
defaults = dict( |
|
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, |
|
delta=delta, wd_ratio=wd_ratio, nesterov=nesterov) |
|
super(AdamP, self).__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
|
|
grad = p.grad |
|
beta1, beta2 = group['betas'] |
|
nesterov = group['nesterov'] |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state['step'] = 0 |
|
state['exp_avg'] = torch.zeros_like(p) |
|
state['exp_avg_sq'] = torch.zeros_like(p) |
|
|
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
|
|
|
state['step'] += 1 |
|
bias_correction1 = 1 - beta1 ** state['step'] |
|
bias_correction2 = 1 - beta2 ** state['step'] |
|
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) |
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) |
|
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) |
|
step_size = group['lr'] / bias_correction1 |
|
|
|
if nesterov: |
|
perturb = (beta1 * exp_avg + (1 - beta1) * grad) / denom |
|
else: |
|
perturb = exp_avg / denom |
|
|
|
|
|
wd_ratio = 1. |
|
if len(p.shape) > 1: |
|
perturb, wd_ratio = projection(p, grad, perturb, group['delta'], group['wd_ratio'], group['eps']) |
|
|
|
|
|
if group['weight_decay'] > 0: |
|
p.mul_(1. - group['lr'] * group['weight_decay'] * wd_ratio) |
|
|
|
|
|
p.add_(perturb, alpha=-step_size) |
|
|
|
return loss |
|
|