|
""" Optimizer Factory w/ Custom Weight Decay |
|
Hacked together by / Copyright 2021 Ross Wightman |
|
""" |
|
import logging |
|
from itertools import islice |
|
from typing import Optional, Callable, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
|
|
from timm.models import group_parameters |
|
|
|
from .adabelief import AdaBelief |
|
from .adafactor import Adafactor |
|
from .adahessian import Adahessian |
|
from .adamp import AdamP |
|
from .adan import Adan |
|
from .lamb import Lamb |
|
from .lars import Lars |
|
from .lion import Lion |
|
from .lookahead import Lookahead |
|
from .madgrad import MADGRAD |
|
from .nadam import Nadam |
|
from .nadamw import NAdamW |
|
from .nvnovograd import NvNovoGrad |
|
from .radam import RAdam |
|
from .rmsprop_tf import RMSpropTF |
|
from .sgdp import SGDP |
|
from .sgdw import SGDW |
|
|
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
_DEFAULT_FOREACH = { |
|
'lion', |
|
} |
|
|
|
|
|
def param_groups_weight_decay( |
|
model: nn.Module, |
|
weight_decay=1e-5, |
|
no_weight_decay_list=() |
|
): |
|
no_weight_decay_list = set(no_weight_decay_list) |
|
decay = [] |
|
no_decay = [] |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
|
|
if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: |
|
no_decay.append(param) |
|
else: |
|
decay.append(param) |
|
|
|
return [ |
|
{'params': no_decay, 'weight_decay': 0.}, |
|
{'params': decay, 'weight_decay': weight_decay}] |
|
|
|
|
|
def _group(it, size): |
|
it = iter(it) |
|
return iter(lambda: tuple(islice(it, size)), ()) |
|
|
|
|
|
def _layer_map(model, layers_per_group=12, num_groups=None): |
|
def _in_head(n, hp): |
|
if not hp: |
|
return True |
|
elif isinstance(hp, (tuple, list)): |
|
return any([n.startswith(hpi) for hpi in hp]) |
|
else: |
|
return n.startswith(hp) |
|
|
|
head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None) |
|
names_trunk = [] |
|
names_head = [] |
|
for n, _ in model.named_parameters(): |
|
names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n) |
|
|
|
|
|
num_trunk_layers = len(names_trunk) |
|
if num_groups is not None: |
|
layers_per_group = -(num_trunk_layers // -num_groups) |
|
names_trunk = list(_group(names_trunk, layers_per_group)) |
|
|
|
num_trunk_groups = len(names_trunk) |
|
layer_map = {n: i for i, l in enumerate(names_trunk) for n in l} |
|
layer_map.update({n: num_trunk_groups for n in names_head}) |
|
return layer_map |
|
|
|
|
|
def param_groups_layer_decay( |
|
model: nn.Module, |
|
weight_decay: float = 0.05, |
|
no_weight_decay_list: Tuple[str] = (), |
|
layer_decay: float = .75, |
|
end_layer_decay: Optional[float] = None, |
|
verbose: bool = False, |
|
): |
|
""" |
|
Parameter groups for layer-wise lr decay & weight decay |
|
Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58 |
|
""" |
|
no_weight_decay_list = set(no_weight_decay_list) |
|
param_group_names = {} |
|
param_groups = {} |
|
|
|
if hasattr(model, 'group_matcher'): |
|
|
|
layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True) |
|
else: |
|
|
|
layer_map = _layer_map(model) |
|
num_layers = max(layer_map.values()) + 1 |
|
layer_max = num_layers - 1 |
|
layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers)) |
|
|
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
|
|
|
|
if param.ndim == 1 or name in no_weight_decay_list: |
|
g_decay = "no_decay" |
|
this_decay = 0. |
|
else: |
|
g_decay = "decay" |
|
this_decay = weight_decay |
|
|
|
layer_id = layer_map.get(name, layer_max) |
|
group_name = "layer_%d_%s" % (layer_id, g_decay) |
|
|
|
if group_name not in param_groups: |
|
this_scale = layer_scales[layer_id] |
|
param_group_names[group_name] = { |
|
"lr_scale": this_scale, |
|
"weight_decay": this_decay, |
|
"param_names": [], |
|
} |
|
param_groups[group_name] = { |
|
"lr_scale": this_scale, |
|
"weight_decay": this_decay, |
|
"params": [], |
|
} |
|
|
|
param_group_names[group_name]["param_names"].append(name) |
|
param_groups[group_name]["params"].append(param) |
|
|
|
if verbose: |
|
import json |
|
_logger.info("parameter groups: \n%s" % json.dumps(param_group_names, indent=2)) |
|
|
|
return list(param_groups.values()) |
|
|
|
|
|
def optimizer_kwargs(cfg): |
|
""" cfg/argparse to kwargs helper |
|
Convert optimizer args in argparse args or cfg like object to keyword args for updated create fn. |
|
""" |
|
kwargs = dict( |
|
opt=cfg.opt, |
|
lr=cfg.lr, |
|
weight_decay=cfg.weight_decay, |
|
momentum=cfg.momentum, |
|
) |
|
if getattr(cfg, 'opt_eps', None) is not None: |
|
kwargs['eps'] = cfg.opt_eps |
|
if getattr(cfg, 'opt_betas', None) is not None: |
|
kwargs['betas'] = cfg.opt_betas |
|
if getattr(cfg, 'layer_decay', None) is not None: |
|
kwargs['layer_decay'] = cfg.layer_decay |
|
if getattr(cfg, 'opt_args', None) is not None: |
|
kwargs.update(cfg.opt_args) |
|
if getattr(cfg, 'opt_foreach', None) is not None: |
|
kwargs['foreach'] = cfg.opt_foreach |
|
return kwargs |
|
|
|
|
|
def create_optimizer(args, model, filter_bias_and_bn=True): |
|
""" Legacy optimizer factory for backwards compatibility. |
|
NOTE: Use create_optimizer_v2 for new code. |
|
""" |
|
return create_optimizer_v2( |
|
model, |
|
**optimizer_kwargs(cfg=args), |
|
filter_bias_and_bn=filter_bias_and_bn, |
|
) |
|
|
|
|
|
def create_optimizer_v2( |
|
model_or_params, |
|
opt: str = 'sgd', |
|
lr: Optional[float] = None, |
|
weight_decay: float = 0., |
|
momentum: float = 0.9, |
|
foreach: Optional[bool] = None, |
|
filter_bias_and_bn: bool = True, |
|
layer_decay: Optional[float] = None, |
|
param_group_fn: Optional[Callable] = None, |
|
**kwargs, |
|
): |
|
""" Create an optimizer. |
|
|
|
TODO currently the model is passed in and all parameters are selected for optimization. |
|
For more general use an interface that allows selection of parameters to optimize and lr groups, one of: |
|
* a filter fn interface that further breaks params into groups in a weight_decay compatible fashion |
|
* expose the parameters interface and leave it up to caller |
|
|
|
Args: |
|
model_or_params (nn.Module): model containing parameters to optimize |
|
opt: name of optimizer to create |
|
lr: initial learning rate |
|
weight_decay: weight decay to apply in optimizer |
|
momentum: momentum for momentum based optimizers (others may use betas via kwargs) |
|
foreach: Enable / disable foreach (multi-tensor) operation if True / False. Choose safe default if None |
|
filter_bias_and_bn: filter out bias, bn and other 1d params from weight decay |
|
**kwargs: extra optimizer specific kwargs to pass through |
|
|
|
Returns: |
|
Optimizer |
|
""" |
|
if isinstance(model_or_params, nn.Module): |
|
|
|
no_weight_decay = {} |
|
if hasattr(model_or_params, 'no_weight_decay'): |
|
no_weight_decay = model_or_params.no_weight_decay() |
|
|
|
if param_group_fn: |
|
parameters = param_group_fn(model_or_params) |
|
elif layer_decay is not None: |
|
parameters = param_groups_layer_decay( |
|
model_or_params, |
|
weight_decay=weight_decay, |
|
layer_decay=layer_decay, |
|
no_weight_decay_list=no_weight_decay, |
|
) |
|
weight_decay = 0. |
|
elif weight_decay and filter_bias_and_bn: |
|
parameters = param_groups_weight_decay(model_or_params, weight_decay, no_weight_decay) |
|
weight_decay = 0. |
|
else: |
|
parameters = model_or_params.parameters() |
|
else: |
|
|
|
parameters = model_or_params |
|
|
|
opt_lower = opt.lower() |
|
opt_split = opt_lower.split('_') |
|
opt_lower = opt_split[-1] |
|
|
|
if opt_lower.startswith('fused'): |
|
try: |
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD |
|
has_apex = True |
|
except ImportError: |
|
has_apex = False |
|
assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' |
|
|
|
if opt_lower.startswith('bnb'): |
|
try: |
|
import bitsandbytes as bnb |
|
has_bnb = True |
|
except ImportError: |
|
has_bnb = False |
|
assert has_bnb and torch.cuda.is_available(), 'bitsandbytes and CUDA required for bnb optimizers' |
|
|
|
opt_args = dict(weight_decay=weight_decay, **kwargs) |
|
|
|
if lr is not None: |
|
opt_args.setdefault('lr', lr) |
|
|
|
if foreach is None: |
|
if opt in _DEFAULT_FOREACH: |
|
opt_args.setdefault('foreach', True) |
|
else: |
|
opt_args['foreach'] = foreach |
|
|
|
|
|
if opt_lower == 'sgd' or opt_lower == 'nesterov': |
|
|
|
opt_args.pop('eps', None) |
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'momentum': |
|
opt_args.pop('eps', None) |
|
optimizer = optim.SGD(parameters, momentum=momentum, nesterov=False, **opt_args) |
|
elif opt_lower == 'sgdp': |
|
optimizer = SGDP(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'sgdw' or opt_lower == 'nesterovw': |
|
|
|
opt_args.pop('eps', None) |
|
optimizer = SGDW(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'momentumw': |
|
opt_args.pop('eps', None) |
|
optimizer = SGDW(parameters, momentum=momentum, nesterov=False, **opt_args) |
|
|
|
|
|
elif opt_lower == 'adam': |
|
optimizer = optim.Adam(parameters, **opt_args) |
|
elif opt_lower == 'adamw': |
|
optimizer = optim.AdamW(parameters, **opt_args) |
|
elif opt_lower == 'adamp': |
|
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) |
|
elif opt_lower == 'nadam': |
|
try: |
|
|
|
optimizer = optim.Nadam(parameters, **opt_args) |
|
except AttributeError: |
|
optimizer = Nadam(parameters, **opt_args) |
|
elif opt_lower == 'nadamw': |
|
optimizer = NAdamW(parameters, **opt_args) |
|
elif opt_lower == 'radam': |
|
optimizer = RAdam(parameters, **opt_args) |
|
elif opt_lower == 'adamax': |
|
optimizer = optim.Adamax(parameters, **opt_args) |
|
elif opt_lower == 'adabelief': |
|
optimizer = AdaBelief(parameters, rectify=False, **opt_args) |
|
elif opt_lower == 'radabelief': |
|
optimizer = AdaBelief(parameters, rectify=True, **opt_args) |
|
elif opt_lower == 'adadelta': |
|
optimizer = optim.Adadelta(parameters, **opt_args) |
|
elif opt_lower == 'adagrad': |
|
opt_args.setdefault('eps', 1e-8) |
|
optimizer = optim.Adagrad(parameters, **opt_args) |
|
elif opt_lower == 'adafactor': |
|
optimizer = Adafactor(parameters, **opt_args) |
|
elif opt_lower == 'adanp': |
|
optimizer = Adan(parameters, no_prox=False, **opt_args) |
|
elif opt_lower == 'adanw': |
|
optimizer = Adan(parameters, no_prox=True, **opt_args) |
|
elif opt_lower == 'lamb': |
|
optimizer = Lamb(parameters, **opt_args) |
|
elif opt_lower == 'lambc': |
|
optimizer = Lamb(parameters, trust_clip=True, **opt_args) |
|
elif opt_lower == 'larc': |
|
optimizer = Lars(parameters, momentum=momentum, trust_clip=True, **opt_args) |
|
elif opt_lower == 'lars': |
|
optimizer = Lars(parameters, momentum=momentum, **opt_args) |
|
elif opt_lower == 'nlarc': |
|
optimizer = Lars(parameters, momentum=momentum, trust_clip=True, nesterov=True, **opt_args) |
|
elif opt_lower == 'nlars': |
|
optimizer = Lars(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'madgrad': |
|
optimizer = MADGRAD(parameters, momentum=momentum, **opt_args) |
|
elif opt_lower == 'madgradw': |
|
optimizer = MADGRAD(parameters, momentum=momentum, decoupled_decay=True, **opt_args) |
|
elif opt_lower == 'novograd' or opt_lower == 'nvnovograd': |
|
optimizer = NvNovoGrad(parameters, **opt_args) |
|
elif opt_lower == 'rmsprop': |
|
optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=momentum, **opt_args) |
|
elif opt_lower == 'rmsproptf': |
|
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=momentum, **opt_args) |
|
elif opt_lower == 'lion': |
|
opt_args.pop('eps', None) |
|
optimizer = Lion(parameters, **opt_args) |
|
|
|
|
|
elif opt_lower == 'adahessian': |
|
optimizer = Adahessian(parameters, **opt_args) |
|
|
|
|
|
elif opt_lower == 'fusedsgd': |
|
opt_args.pop('eps', None) |
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'fusedmomentum': |
|
opt_args.pop('eps', None) |
|
optimizer = FusedSGD(parameters, momentum=momentum, nesterov=False, **opt_args) |
|
elif opt_lower == 'fusedadam': |
|
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) |
|
elif opt_lower == 'fusedadamw': |
|
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) |
|
elif opt_lower == 'fusedlamb': |
|
optimizer = FusedLAMB(parameters, **opt_args) |
|
elif opt_lower == 'fusednovograd': |
|
opt_args.setdefault('betas', (0.95, 0.98)) |
|
optimizer = FusedNovoGrad(parameters, **opt_args) |
|
|
|
|
|
elif opt_lower == 'bnbsgd': |
|
opt_args.pop('eps', None) |
|
optimizer = bnb.optim.SGD(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'bnbsgd8bit': |
|
opt_args.pop('eps', None) |
|
optimizer = bnb.optim.SGD8bit(parameters, momentum=momentum, nesterov=True, **opt_args) |
|
elif opt_lower == 'bnbmomentum': |
|
opt_args.pop('eps', None) |
|
optimizer = bnb.optim.SGD(parameters, momentum=momentum, **opt_args) |
|
elif opt_lower == 'bnbmomentum8bit': |
|
opt_args.pop('eps', None) |
|
optimizer = bnb.optim.SGD8bit(parameters, momentum=momentum, **opt_args) |
|
elif opt_lower == 'bnbadam': |
|
optimizer = bnb.optim.Adam(parameters, **opt_args) |
|
elif opt_lower == 'bnbadam8bit': |
|
optimizer = bnb.optim.Adam8bit(parameters, **opt_args) |
|
elif opt_lower == 'bnbadamw': |
|
optimizer = bnb.optim.AdamW(parameters, **opt_args) |
|
elif opt_lower == 'bnbadamw8bit': |
|
optimizer = bnb.optim.AdamW8bit(parameters, **opt_args) |
|
elif opt_lower == 'bnblamb': |
|
optimizer = bnb.optim.LAMB(parameters, **opt_args) |
|
elif opt_lower == 'bnblamb8bit': |
|
optimizer = bnb.optim.LAMB8bit(parameters, **opt_args) |
|
elif opt_lower == 'bnblars': |
|
optimizer = bnb.optim.LARS(parameters, **opt_args) |
|
elif opt_lower == 'bnblarsb8bit': |
|
optimizer = bnb.optim.LAMB8bit(parameters, **opt_args) |
|
elif opt_lower == 'bnblion': |
|
optimizer = bnb.optim.Lion(parameters, **opt_args) |
|
elif opt_lower == 'bnblion8bit': |
|
optimizer = bnb.optim.Lion8bit(parameters, **opt_args) |
|
|
|
else: |
|
assert False and "Invalid optimizer" |
|
raise ValueError |
|
|
|
if len(opt_split) > 1: |
|
if opt_split[0] == 'lookahead': |
|
optimizer = Lookahead(optimizer) |
|
|
|
return optimizer |
|
|