|
""" Polynomial Scheduler |
|
|
|
Polynomial LR schedule with warmup, noise. |
|
|
|
Hacked together by / Copyright 2021 Ross Wightman |
|
""" |
|
import math |
|
import logging |
|
from typing import List |
|
|
|
import torch |
|
|
|
from .scheduler import Scheduler |
|
|
|
|
|
_logger = logging.getLogger(__name__) |
|
|
|
|
|
class PolyLRScheduler(Scheduler): |
|
""" Polynomial LR Scheduler w/ warmup, noise, and k-decay |
|
|
|
k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
optimizer: torch.optim.Optimizer, |
|
t_initial: int, |
|
power: float = 0.5, |
|
lr_min: float = 0., |
|
cycle_mul: float = 1., |
|
cycle_decay: float = 1., |
|
cycle_limit: int = 1, |
|
warmup_t=0, |
|
warmup_lr_init=0, |
|
warmup_prefix=False, |
|
t_in_epochs=True, |
|
noise_range_t=None, |
|
noise_pct=0.67, |
|
noise_std=1.0, |
|
noise_seed=42, |
|
k_decay=1.0, |
|
initialize=True, |
|
) -> None: |
|
super().__init__( |
|
optimizer, |
|
param_group_field="lr", |
|
t_in_epochs=t_in_epochs, |
|
noise_range_t=noise_range_t, |
|
noise_pct=noise_pct, |
|
noise_std=noise_std, |
|
noise_seed=noise_seed, |
|
initialize=initialize |
|
) |
|
|
|
assert t_initial > 0 |
|
assert lr_min >= 0 |
|
if t_initial == 1 and cycle_mul == 1 and cycle_decay == 1: |
|
_logger.warning("Cosine annealing scheduler will have no effect on the learning " |
|
"rate since t_initial = t_mul = eta_mul = 1.") |
|
self.t_initial = t_initial |
|
self.power = power |
|
self.lr_min = lr_min |
|
self.cycle_mul = cycle_mul |
|
self.cycle_decay = cycle_decay |
|
self.cycle_limit = cycle_limit |
|
self.warmup_t = warmup_t |
|
self.warmup_lr_init = warmup_lr_init |
|
self.warmup_prefix = warmup_prefix |
|
self.k_decay = k_decay |
|
if self.warmup_t: |
|
self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] |
|
super().update_groups(self.warmup_lr_init) |
|
else: |
|
self.warmup_steps = [1 for _ in self.base_values] |
|
|
|
def _get_lr(self, t: int) -> List[float]: |
|
if t < self.warmup_t: |
|
lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] |
|
else: |
|
if self.warmup_prefix: |
|
t = t - self.warmup_t |
|
|
|
if self.cycle_mul != 1: |
|
i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) |
|
t_i = self.cycle_mul ** i * self.t_initial |
|
t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial |
|
else: |
|
i = t // self.t_initial |
|
t_i = self.t_initial |
|
t_curr = t - (self.t_initial * i) |
|
|
|
gamma = self.cycle_decay ** i |
|
lr_max_values = [v * gamma for v in self.base_values] |
|
k = self.k_decay |
|
|
|
if i < self.cycle_limit: |
|
lrs = [ |
|
self.lr_min + (lr_max - self.lr_min) * (1 - t_curr ** k / t_i ** k) ** self.power |
|
for lr_max in lr_max_values |
|
] |
|
else: |
|
lrs = [self.lr_min for _ in self.base_values] |
|
|
|
return lrs |
|
|
|
def get_cycle_length(self, cycles=0): |
|
cycles = max(1, cycles or self.cycle_limit) |
|
if self.cycle_mul == 1.0: |
|
return self.t_initial * cycles |
|
else: |
|
return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul))) |
|
|