pengdadaaa's picture
Upload 741 files
786f6a6 verified
raw
history blame
6.79 kB
""" Scheduler Factory
Hacked together by / Copyright 2021 Ross Wightman
"""
from typing import List, Optional, Union
from torch.optim import Optimizer
from .cosine_lr import CosineLRScheduler
from .multistep_lr import MultiStepLRScheduler
from .plateau_lr import PlateauLRScheduler
from .poly_lr import PolyLRScheduler
from .step_lr import StepLRScheduler
from .tanh_lr import TanhLRScheduler
def scheduler_kwargs(cfg, decreasing_metric: Optional[bool] = None):
""" cfg/argparse to kwargs helper
Convert scheduler args in argparse args or cfg (.dot) like object to keyword args.
"""
eval_metric = getattr(cfg, 'eval_metric', 'top1')
if decreasing_metric is not None:
plateau_mode = 'min' if decreasing_metric else 'max'
else:
plateau_mode = 'min' if 'loss' in eval_metric else 'max'
kwargs = dict(
sched=cfg.sched,
num_epochs=getattr(cfg, 'epochs', 100),
decay_epochs=getattr(cfg, 'decay_epochs', 30),
decay_milestones=getattr(cfg, 'decay_milestones', [30, 60]),
warmup_epochs=getattr(cfg, 'warmup_epochs', 5),
cooldown_epochs=getattr(cfg, 'cooldown_epochs', 0),
patience_epochs=getattr(cfg, 'patience_epochs', 10),
decay_rate=getattr(cfg, 'decay_rate', 0.1),
min_lr=getattr(cfg, 'min_lr', 0.),
warmup_lr=getattr(cfg, 'warmup_lr', 1e-5),
warmup_prefix=getattr(cfg, 'warmup_prefix', False),
noise=getattr(cfg, 'lr_noise', None),
noise_pct=getattr(cfg, 'lr_noise_pct', 0.67),
noise_std=getattr(cfg, 'lr_noise_std', 1.),
noise_seed=getattr(cfg, 'seed', 42),
cycle_mul=getattr(cfg, 'lr_cycle_mul', 1.),
cycle_decay=getattr(cfg, 'lr_cycle_decay', 0.1),
cycle_limit=getattr(cfg, 'lr_cycle_limit', 1),
k_decay=getattr(cfg, 'lr_k_decay', 1.0),
plateau_mode=plateau_mode,
step_on_epochs=not getattr(cfg, 'sched_on_updates', False),
)
return kwargs
def create_scheduler(
args,
optimizer: Optimizer,
updates_per_epoch: int = 0,
):
return create_scheduler_v2(
optimizer=optimizer,
**scheduler_kwargs(args),
updates_per_epoch=updates_per_epoch,
)
def create_scheduler_v2(
optimizer: Optimizer,
sched: str = 'cosine',
num_epochs: int = 300,
decay_epochs: int = 90,
decay_milestones: List[int] = (90, 180, 270),
cooldown_epochs: int = 0,
patience_epochs: int = 10,
decay_rate: float = 0.1,
min_lr: float = 0,
warmup_lr: float = 1e-5,
warmup_epochs: int = 0,
warmup_prefix: bool = False,
noise: Union[float, List[float]] = None,
noise_pct: float = 0.67,
noise_std: float = 1.,
noise_seed: int = 42,
cycle_mul: float = 1.,
cycle_decay: float = 0.1,
cycle_limit: int = 1,
k_decay: float = 1.0,
plateau_mode: str = 'max',
step_on_epochs: bool = True,
updates_per_epoch: int = 0,
):
t_initial = num_epochs
warmup_t = warmup_epochs
decay_t = decay_epochs
cooldown_t = cooldown_epochs
if not step_on_epochs:
assert updates_per_epoch > 0, 'updates_per_epoch must be set to number of dataloader batches'
t_initial = t_initial * updates_per_epoch
warmup_t = warmup_t * updates_per_epoch
decay_t = decay_t * updates_per_epoch
decay_milestones = [d * updates_per_epoch for d in decay_milestones]
cooldown_t = cooldown_t * updates_per_epoch
# warmup args
warmup_args = dict(
warmup_lr_init=warmup_lr,
warmup_t=warmup_t,
warmup_prefix=warmup_prefix,
)
# setup noise args for supporting schedulers
if noise is not None:
if isinstance(noise, (list, tuple)):
noise_range = [n * t_initial for n in noise]
if len(noise_range) == 1:
noise_range = noise_range[0]
else:
noise_range = noise * t_initial
else:
noise_range = None
noise_args = dict(
noise_range_t=noise_range,
noise_pct=noise_pct,
noise_std=noise_std,
noise_seed=noise_seed,
)
# setup cycle args for supporting schedulers
cycle_args = dict(
cycle_mul=cycle_mul,
cycle_decay=cycle_decay,
cycle_limit=cycle_limit,
)
lr_scheduler = None
if sched == 'cosine':
lr_scheduler = CosineLRScheduler(
optimizer,
t_initial=t_initial,
lr_min=min_lr,
t_in_epochs=step_on_epochs,
**cycle_args,
**warmup_args,
**noise_args,
k_decay=k_decay,
)
elif sched == 'tanh':
lr_scheduler = TanhLRScheduler(
optimizer,
t_initial=t_initial,
lr_min=min_lr,
t_in_epochs=step_on_epochs,
**cycle_args,
**warmup_args,
**noise_args,
)
elif sched == 'step':
lr_scheduler = StepLRScheduler(
optimizer,
decay_t=decay_t,
decay_rate=decay_rate,
t_in_epochs=step_on_epochs,
**warmup_args,
**noise_args,
)
elif sched == 'multistep':
lr_scheduler = MultiStepLRScheduler(
optimizer,
decay_t=decay_milestones,
decay_rate=decay_rate,
t_in_epochs=step_on_epochs,
**warmup_args,
**noise_args,
)
elif sched == 'plateau':
assert step_on_epochs, 'Plateau LR only supports step per epoch.'
warmup_args.pop('warmup_prefix', False)
lr_scheduler = PlateauLRScheduler(
optimizer,
decay_rate=decay_rate,
patience_t=patience_epochs,
cooldown_t=0,
**warmup_args,
lr_min=min_lr,
mode=plateau_mode,
**noise_args,
)
elif sched == 'poly':
lr_scheduler = PolyLRScheduler(
optimizer,
power=decay_rate, # overloading 'decay_rate' as polynomial power
t_initial=t_initial,
lr_min=min_lr,
t_in_epochs=step_on_epochs,
k_decay=k_decay,
**cycle_args,
**warmup_args,
**noise_args,
)
if hasattr(lr_scheduler, 'get_cycle_length'):
# for cycle based schedulers (cosine, tanh, poly) recalculate total epochs w/ cycles & cooldown
t_with_cycles_and_cooldown = lr_scheduler.get_cycle_length() + cooldown_t
if step_on_epochs:
num_epochs = t_with_cycles_and_cooldown
else:
num_epochs = t_with_cycles_and_cooldown // updates_per_epoch
return lr_scheduler, num_epochs