""" EfficientNet, MobileNetV3, etc Blocks Hacked together by / Copyright 2019, Ross Wightman """ import torch import torch.nn as nn from torch.nn import functional as F from timm.layers import create_conv2d, DropPath, make_divisible, create_act_layer, get_norm_act_layer __all__ = [ 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv', 'InvertedResidual', 'CondConvResidual', 'EdgeResidual'] def num_groups(group_size, channels): if not group_size: # 0 or None return 1 # normal conv with 1 group else: # NOTE group_size == 1 -> depthwise conv assert channels % group_size == 0 return channels // group_size class SqueezeExcite(nn.Module): """ Squeeze-and-Excitation w/ specific features for EfficientNet/MobileNet family Args: in_chs (int): input channels to layer rd_ratio (float): ratio of squeeze reduction act_layer (nn.Module): activation layer of containing block gate_layer (Callable): attention gate function force_act_layer (nn.Module): override block's activation fn if this is set/bound rd_round_fn (Callable): specify a fn to calculate rounding of reduced chs """ def __init__( self, in_chs, rd_ratio=0.25, rd_channels=None, act_layer=nn.ReLU, gate_layer=nn.Sigmoid, force_act_layer=None, rd_round_fn=None): super(SqueezeExcite, self).__init__() if rd_channels is None: rd_round_fn = rd_round_fn or round rd_channels = rd_round_fn(in_chs * rd_ratio) act_layer = force_act_layer or act_layer self.conv_reduce = nn.Conv2d(in_chs, rd_channels, 1, bias=True) self.act1 = create_act_layer(act_layer, inplace=True) self.conv_expand = nn.Conv2d(rd_channels, in_chs, 1, bias=True) self.gate = create_act_layer(gate_layer) def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.conv_reduce(x_se) x_se = self.act1(x_se) x_se = self.conv_expand(x_se) return x * self.gate(x_se) class ConvBnAct(nn.Module): """ Conv + Norm Layer + Activation w/ optional skip connection """ def __init__( self, in_chs, out_chs, kernel_size, stride=1, dilation=1, group_size=0, pad_type='', skip=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, drop_path_rate=0.): super(ConvBnAct, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) groups = num_groups(group_size, in_chs) self.has_skip = skip and stride == 1 and in_chs == out_chs self.conv = create_conv2d( in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, groups=groups, padding=pad_type) self.bn1 = norm_act_layer(out_chs, inplace=True) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # output of conv after act, same as block coutput return dict(module='bn1', hook_type='forward', num_chs=self.conv.out_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv.out_channels) def forward(self, x): shortcut = x x = self.conv(x) x = self.bn1(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class DepthwiseSeparableConv(nn.Module): """ DepthwiseSeparable block Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion (factor of 1.0). This is an alternative to having a IR with an optional first pw conv. """ def __init__( self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='', noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, drop_path_rate=0.): super(DepthwiseSeparableConv, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) groups = num_groups(group_size, in_chs) self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip self.has_pw_act = pw_act # activation after point-wise conv self.conv_dw = create_conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, groups=groups) self.bn1 = norm_act_layer(in_chs, inplace=True) # Squeeze-and-excitation self.se = se_layer(in_chs, act_layer=act_layer) if se_layer else nn.Identity() self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_act_layer(out_chs, inplace=True, apply_act=self.has_pw_act) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PW return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pw.out_channels) def forward(self, x): shortcut = x x = self.conv_dw(x) x = self.bn1(x) x = self.se(x) x = self.conv_pw(x) x = self.bn2(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE Originally used in MobileNet-V2 - https://arxiv.org/abs/1801.04381v4, this layer is often referred to as 'MBConv' for (Mobile inverted bottleneck conv) and is also used in * MNasNet - https://arxiv.org/abs/1807.11626 * EfficientNet - https://arxiv.org/abs/1905.11946 * MobileNet-V3 - https://arxiv.org/abs/1905.02244 """ def __init__( self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='', noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, conv_kwargs=None, drop_path_rate=0.): super(InvertedResidual, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) conv_kwargs = conv_kwargs or {} mid_chs = make_divisible(in_chs * exp_ratio) groups = num_groups(group_size, mid_chs) self.has_skip = (in_chs == out_chs and stride == 1) and not noskip # Point-wise expansion self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) self.bn1 = norm_act_layer(mid_chs, inplace=True) # Depth-wise convolution self.conv_dw = create_conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation, groups=groups, padding=pad_type, **conv_kwargs) self.bn2 = norm_act_layer(mid_chs, inplace=True) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.bn3 = norm_act_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PWL return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pwl.out_channels) def forward(self, x): shortcut = x x = self.conv_pw(x) x = self.bn1(x) x = self.conv_dw(x) x = self.bn2(x) x = self.se(x) x = self.conv_pwl(x) x = self.bn3(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class CondConvResidual(InvertedResidual): """ Inverted residual block w/ CondConv routing""" def __init__( self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='', noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, num_experts=0, drop_path_rate=0.): self.num_experts = num_experts conv_kwargs = dict(num_experts=self.num_experts) super(CondConvResidual, self).__init__( in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, group_size=group_size, pad_type=pad_type, act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, pw_kernel_size=pw_kernel_size, se_layer=se_layer, norm_layer=norm_layer, conv_kwargs=conv_kwargs, drop_path_rate=drop_path_rate) self.routing_fn = nn.Linear(in_chs, self.num_experts) def forward(self, x): shortcut = x pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) # CondConv routing routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) x = self.conv_pw(x, routing_weights) x = self.bn1(x) x = self.conv_dw(x, routing_weights) x = self.bn2(x) x = self.se(x) x = self.conv_pwl(x, routing_weights) x = self.bn3(x) if self.has_skip: x = self.drop_path(x) + shortcut return x class EdgeResidual(nn.Module): """ Residual block with expansion convolution followed by pointwise-linear w/ stride Originally introduced in `EfficientNet-EdgeTPU: Creating Accelerator-Optimized Neural Networks with AutoML` - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html This layer is also called FusedMBConv in the MobileDet, EfficientNet-X, and EfficientNet-V2 papers * MobileDet - https://arxiv.org/abs/2004.14525 * EfficientNet-X - https://arxiv.org/abs/2102.05610 * EfficientNet-V2 - https://arxiv.org/abs/2104.00298 """ def __init__( self, in_chs, out_chs, exp_kernel_size=3, stride=1, dilation=1, group_size=0, pad_type='', force_in_chs=0, noskip=False, exp_ratio=1.0, pw_kernel_size=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, se_layer=None, drop_path_rate=0.): super(EdgeResidual, self).__init__() norm_act_layer = get_norm_act_layer(norm_layer, act_layer) if force_in_chs > 0: mid_chs = make_divisible(force_in_chs * exp_ratio) else: mid_chs = make_divisible(in_chs * exp_ratio) groups = num_groups(group_size, in_chs) self.has_skip = (in_chs == out_chs and stride == 1) and not noskip # Expansion convolution self.conv_exp = create_conv2d( in_chs, mid_chs, exp_kernel_size, stride=stride, dilation=dilation, groups=groups, padding=pad_type) self.bn1 = norm_act_layer(mid_chs, inplace=True) # Squeeze-and-excitation self.se = se_layer(mid_chs, act_layer=act_layer) if se_layer else nn.Identity() # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_act_layer(out_chs, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, before PWL return dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output return dict(module='', num_chs=self.conv_pwl.out_channels) def forward(self, x): shortcut = x x = self.conv_exp(x) x = self.bn1(x) x = self.se(x) x = self.conv_pwl(x) x = self.bn2(x) if self.has_skip: x = self.drop_path(x) + shortcut return x