""" Bring-Your-Own-Blocks Network A flexible network w/ dataclass based config for stacking those NN blocks. This model is currently used to implement the following networks: GPU Efficient (ResNets) - gernet_l/m/s (original versions called genet, but this was already used (by SENet author)). Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 Code and weights: https://github.com/idstcv/GPU-Efficient-Networks, licensed Apache 2.0 RepVGG - repvgg_* Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 Code and weights: https://github.com/DingXiaoH/RepVGG, licensed MIT MobileOne - mobileone_* Paper: `MobileOne: An Improved One millisecond Mobile Backbone` - https://arxiv.org/abs/2206.04040 Code and weights: https://github.com/apple/ml-mobileone, licensed MIT In all cases the models have been modified to fit within the design of ByobNet. I've remapped the original weights and verified accuracies. For GPU Efficient nets, I used the original names for the blocks since they were for the most part the same as original residual blocks in ResNe(X)t, DarkNet, and other existing models. Note also some changes introduced in RegNet were also present in the stem and bottleneck blocks for this model. A significant number of different network archs can be implemented here, including variants of the above nets that include attention. Hacked together by / copyright Ross Wightman, 2021. """ import math from dataclasses import dataclass, field, replace from functools import partial from typing import Tuple, List, Dict, Optional, Union, Any, Callable, Sequence import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import ClassifierHead, ConvNormAct, BatchNormAct2d, DropPath, AvgPool2dSame, \ create_conv2d, get_act_layer, get_norm_act_layer, get_attn, make_divisible, to_2tuple, EvoNorm2dS0a from ._builder import build_model_with_cfg from ._manipulate import named_apply, checkpoint_seq from ._registry import generate_default_cfgs, register_model __all__ = ['ByobNet', 'ByoModelCfg', 'ByoBlockCfg', 'create_byob_stem', 'create_block'] @dataclass class ByoBlockCfg: type: Union[str, nn.Module] d: int # block depth (number of block repeats in stage) c: int # number of output channels for each block in stage s: int = 2 # stride of stage (first block) gs: Optional[Union[int, Callable]] = None # group-size of blocks in stage, conv is depthwise if gs == 1 br: float = 1. # bottleneck-ratio of blocks in stage # NOTE: these config items override the model cfgs that are applied to all blocks by default attn_layer: Optional[str] = None attn_kwargs: Optional[Dict[str, Any]] = None self_attn_layer: Optional[str] = None self_attn_kwargs: Optional[Dict[str, Any]] = None block_kwargs: Optional[Dict[str, Any]] = None @dataclass class ByoModelCfg: blocks: Tuple[Union[ByoBlockCfg, Tuple[ByoBlockCfg, ...]], ...] downsample: str = 'conv1x1' stem_type: str = '3x3' stem_pool: Optional[str] = 'maxpool' stem_chs: int = 32 width_factor: float = 1.0 num_features: int = 0 # num out_channels for final conv, no final 1x1 conv if 0 zero_init_last: bool = True # zero init last weight (usually bn) in residual path fixed_input_size: bool = False # model constrained to a fixed-input size / img_size must be provided on creation act_layer: str = 'relu' norm_layer: str = 'batchnorm' # NOTE: these config items will be overridden by the block cfg (per-block) if they are set there attn_layer: Optional[str] = None attn_kwargs: dict = field(default_factory=lambda: dict()) self_attn_layer: Optional[str] = None self_attn_kwargs: dict = field(default_factory=lambda: dict()) block_kwargs: Dict[str, Any] = field(default_factory=lambda: dict()) def _rep_vgg_bcfg(d=(4, 6, 16, 1), wf=(1., 1., 1., 1.), groups=0): c = (64, 128, 256, 512) group_size = 0 if groups > 0: group_size = lambda chs, idx: chs // groups if (idx + 1) % 2 == 0 else 0 bcfg = tuple([ByoBlockCfg(type='rep', d=d, c=c * wf, gs=group_size) for d, c, wf in zip(d, c, wf)]) return bcfg def _mobileone_bcfg(d=(2, 8, 10, 1), wf=(1., 1., 1., 1.), se_blocks=(), num_conv_branches=1): c = (64, 128, 256, 512) prev_c = min(64, c[0] * wf[0]) se_blocks = se_blocks or (0,) * len(d) bcfg = [] for d, c, w, se in zip(d, c, wf, se_blocks): scfg = [] for i in range(d): out_c = c * w bk = dict(num_conv_branches=num_conv_branches) ak = {} if i >= d - se: ak['attn_layer'] = 'se' scfg += [ByoBlockCfg(type='one', d=1, c=prev_c, gs=1, block_kwargs=bk, **ak)] # depthwise block scfg += [ByoBlockCfg( type='one', d=1, c=out_c, gs=0, block_kwargs=dict(kernel_size=1, **bk), **ak)] # pointwise block prev_c = out_c bcfg += [scfg] return bcfg def interleave_blocks( types: Tuple[str, str], d, every: Union[int, List[int]] = 1, first: bool = False, **kwargs, ) -> Tuple[ByoBlockCfg]: """ interleave 2 block types in stack """ assert len(types) == 2 if isinstance(every, int): every = list(range(0 if first else every, d, every + 1)) if not every: every = [d - 1] set(every) blocks = [] for i in range(d): block_type = types[1] if i in every else types[0] blocks += [ByoBlockCfg(type=block_type, d=1, **kwargs)] return tuple(blocks) def expand_blocks_cfg(stage_blocks_cfg: Union[ByoBlockCfg, Sequence[ByoBlockCfg]]) -> List[ByoBlockCfg]: if not isinstance(stage_blocks_cfg, Sequence): stage_blocks_cfg = (stage_blocks_cfg,) block_cfgs = [] for i, cfg in enumerate(stage_blocks_cfg): block_cfgs += [replace(cfg, d=1) for _ in range(cfg.d)] return block_cfgs def num_groups(group_size, channels): if not group_size: # 0 or None return 1 # normal conv with 1 group else: # NOTE group_size == 1 -> depthwise conv assert channels % group_size == 0 return channels // group_size @dataclass class LayerFn: conv_norm_act: Callable = ConvNormAct norm_act: Callable = BatchNormAct2d act: Callable = nn.ReLU attn: Optional[Callable] = None self_attn: Optional[Callable] = None class DownsampleAvg(nn.Module): def __init__( self, in_chs: int, out_chs: int, stride: int = 1, dilation: int = 1, apply_act: bool = False, layers: LayerFn = None, ): """ AvgPool Downsampling as in 'D' ResNet variants.""" super(DownsampleAvg, self).__init__() layers = layers or LayerFn() avg_stride = stride if dilation == 1 else 1 if stride > 1 or dilation > 1: avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) else: self.pool = nn.Identity() self.conv = layers.conv_norm_act(in_chs, out_chs, 1, apply_act=apply_act) def forward(self, x): return self.conv(self.pool(x)) def create_shortcut( downsample_type: str, in_chs: int, out_chs: int, stride: int, dilation: Tuple[int, int], layers: LayerFn, **kwargs, ): assert downsample_type in ('avg', 'conv1x1', '') if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: if not downsample_type: return None # no shortcut elif downsample_type == 'avg': return DownsampleAvg(in_chs, out_chs, stride=stride, dilation=dilation[0], **kwargs) else: return layers.conv_norm_act(in_chs, out_chs, kernel_size=1, stride=stride, dilation=dilation[0], **kwargs) else: return nn.Identity() # identity shortcut class BasicBlock(nn.Module): """ ResNet Basic Block - kxk + kxk """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: Tuple[int, int] = (1, 1), group_size: Optional[int] = None, bottle_ratio: float = 1.0, downsample: str = 'avg', attn_last: bool = True, linear_out: bool = False, layers: LayerFn = None, drop_block: Callable = None, drop_path_rate: float = 0., ): super(BasicBlock, self).__init__() layers = layers or LayerFn() mid_chs = make_divisible(out_chs * bottle_ratio) groups = num_groups(group_size, mid_chs) self.shortcut = create_shortcut( downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers, ) self.conv1_kxk = layers.conv_norm_act(in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0]) self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) self.conv2_kxk = layers.conv_norm_act( mid_chs, out_chs, kernel_size, dilation=dilation[1], groups=groups, drop_layer=drop_block, apply_act=False, ) self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.act = nn.Identity() if linear_out else layers.act(inplace=True) def init_weights(self, zero_init_last: bool = False): if zero_init_last and self.shortcut is not None and getattr(self.conv2_kxk.bn, 'weight', None) is not None: nn.init.zeros_(self.conv2_kxk.bn.weight) for attn in (self.attn, self.attn_last): if hasattr(attn, 'reset_parameters'): attn.reset_parameters() def forward(self, x): shortcut = x x = self.conv1_kxk(x) x = self.conv2_kxk(x) x = self.attn(x) x = self.drop_path(x) if self.shortcut is not None: x = x + self.shortcut(shortcut) return self.act(x) class BottleneckBlock(nn.Module): """ ResNet-like Bottleneck Block - 1x1 - kxk - 1x1 """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: Tuple[int, int] = (1, 1), bottle_ratio: float = 1., group_size: Optional[int] = None, downsample: str = 'avg', attn_last: bool = False, linear_out: bool = False, extra_conv: bool = False, bottle_in: bool = False, layers: LayerFn = None, drop_block: Callable = None, drop_path_rate: float = 0., ): super(BottleneckBlock, self).__init__() layers = layers or LayerFn() mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) groups = num_groups(group_size, mid_chs) self.shortcut = create_shortcut( downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers, ) self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) self.conv2_kxk = layers.conv_norm_act( mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, ) if extra_conv: self.conv2b_kxk = layers.conv_norm_act( mid_chs, mid_chs, kernel_size, dilation=dilation[1], groups=groups) else: self.conv2b_kxk = nn.Identity() self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.act = nn.Identity() if linear_out else layers.act(inplace=True) def init_weights(self, zero_init_last: bool = False): if zero_init_last and self.shortcut is not None and getattr(self.conv3_1x1.bn, 'weight', None) is not None: nn.init.zeros_(self.conv3_1x1.bn.weight) for attn in (self.attn, self.attn_last): if hasattr(attn, 'reset_parameters'): attn.reset_parameters() def forward(self, x): shortcut = x x = self.conv1_1x1(x) x = self.conv2_kxk(x) x = self.conv2b_kxk(x) x = self.attn(x) x = self.conv3_1x1(x) x = self.attn_last(x) x = self.drop_path(x) if self.shortcut is not None: x = x + self.shortcut(shortcut) return self.act(x) class DarkBlock(nn.Module): """ DarkNet-like (1x1 + 3x3 w/ stride) block The GE-Net impl included a 1x1 + 3x3 block in their search space. It was not used in the feature models. This block is pretty much a DarkNet block (also DenseNet) hence the name. Neither DarkNet or DenseNet uses strides within the block (external 3x3 or maxpool downsampling is done in front of the block repeats). If one does want to use a lot of these blocks w/ stride, I'd recommend using the EdgeBlock (3x3 /w stride + 1x1) for more optimal compute. """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: Tuple[int, int] = (1, 1), bottle_ratio: float = 1.0, group_size: Optional[int] = None, downsample: str = 'avg', attn_last: bool = True, linear_out: bool = False, layers: LayerFn = None, drop_block: Callable = None, drop_path_rate: float = 0., ): super(DarkBlock, self).__init__() layers = layers or LayerFn() mid_chs = make_divisible(out_chs * bottle_ratio) groups = num_groups(group_size, mid_chs) self.shortcut = create_shortcut( downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers, ) self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) self.conv2_kxk = layers.conv_norm_act( mid_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False, ) self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.act = nn.Identity() if linear_out else layers.act(inplace=True) def init_weights(self, zero_init_last: bool = False): if zero_init_last and self.shortcut is not None and getattr(self.conv2_kxk.bn, 'weight', None) is not None: nn.init.zeros_(self.conv2_kxk.bn.weight) for attn in (self.attn, self.attn_last): if hasattr(attn, 'reset_parameters'): attn.reset_parameters() def forward(self, x): shortcut = x x = self.conv1_1x1(x) x = self.attn(x) x = self.conv2_kxk(x) x = self.attn_last(x) x = self.drop_path(x) if self.shortcut is not None: x = x + self.shortcut(shortcut) return self.act(x) class EdgeBlock(nn.Module): """ EdgeResidual-like (3x3 + 1x1) block A two layer block like DarkBlock, but with the order of the 3x3 and 1x1 convs reversed. Very similar to the EfficientNet Edge-Residual block but this block it ends with activations, is intended to be used with either expansion or bottleneck contraction, and can use DW/group/non-grouped convs. FIXME is there a more common 3x3 + 1x1 conv block to name this after? """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: Tuple[int, int] = (1, 1), bottle_ratio: float = 1.0, group_size: Optional[int] = None, downsample: str = 'avg', attn_last: bool = False, linear_out: bool = False, layers: LayerFn = None, drop_block: Callable = None, drop_path_rate: float = 0., ): super(EdgeBlock, self).__init__() layers = layers or LayerFn() mid_chs = make_divisible(out_chs * bottle_ratio) groups = num_groups(group_size, mid_chs) self.shortcut = create_shortcut( downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers, ) self.conv1_kxk = layers.conv_norm_act( in_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, ) self.attn = nn.Identity() if attn_last or layers.attn is None else layers.attn(mid_chs) self.conv2_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) self.attn_last = nn.Identity() if not attn_last or layers.attn is None else layers.attn(out_chs) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.act = nn.Identity() if linear_out else layers.act(inplace=True) def init_weights(self, zero_init_last: bool = False): if zero_init_last and self.shortcut is not None and getattr(self.conv2_1x1.bn, 'weight', None) is not None: nn.init.zeros_(self.conv2_1x1.bn.weight) for attn in (self.attn, self.attn_last): if hasattr(attn, 'reset_parameters'): attn.reset_parameters() def forward(self, x): shortcut = x x = self.conv1_kxk(x) x = self.attn(x) x = self.conv2_1x1(x) x = self.attn_last(x) x = self.drop_path(x) if self.shortcut is not None: x = x + self.shortcut(shortcut) return self.act(x) class RepVggBlock(nn.Module): """ RepVGG Block. Adapted from impl at https://github.com/DingXiaoH/RepVGG """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: Tuple[int, int] = (1, 1), bottle_ratio: float = 1.0, group_size: Optional[int] = None, downsample: str = '', layers: LayerFn = None, drop_block: Callable = None, drop_path_rate: float = 0., inference_mode: bool = False ): super(RepVggBlock, self).__init__() self.groups = groups = num_groups(group_size, in_chs) layers = layers or LayerFn() if inference_mode: self.reparam_conv = nn.Conv2d( in_channels=in_chs, out_channels=out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=groups, bias=True, ) else: self.reparam_conv = None use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1] self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None self.conv_kxk = layers.conv_norm_act( in_chs, out_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, apply_act=False, ) self.conv_1x1 = layers.conv_norm_act(in_chs, out_chs, 1, stride=stride, groups=groups, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity() self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) self.act = layers.act(inplace=True) def init_weights(self, zero_init_last: bool = False): # NOTE this init overrides that base model init with specific changes for the block type for m in self.modules(): if isinstance(m, nn.BatchNorm2d): nn.init.normal_(m.weight, .1, .1) nn.init.normal_(m.bias, 0, .1) if hasattr(self.attn, 'reset_parameters'): self.attn.reset_parameters() def forward(self, x): if self.reparam_conv is not None: return self.act(self.attn(self.reparam_conv(x))) if self.identity is None: x = self.conv_1x1(x) + self.conv_kxk(x) else: identity = self.identity(x) x = self.conv_1x1(x) + self.conv_kxk(x) x = self.drop_path(x) # not in the paper / official impl, experimental x += identity x = self.attn(x) # no attn in the paper / official impl, experimental return self.act(x) def reparameterize(self): """ Following works like `RepVGG: Making VGG-style ConvNets Great Again` - https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched architecture used at training time to obtain a plain CNN-like structure for inference. """ if self.reparam_conv is not None: return kernel, bias = self._get_kernel_bias() self.reparam_conv = nn.Conv2d( in_channels=self.conv_kxk.conv.in_channels, out_channels=self.conv_kxk.conv.out_channels, kernel_size=self.conv_kxk.conv.kernel_size, stride=self.conv_kxk.conv.stride, padding=self.conv_kxk.conv.padding, dilation=self.conv_kxk.conv.dilation, groups=self.conv_kxk.conv.groups, bias=True, ) self.reparam_conv.weight.data = kernel self.reparam_conv.bias.data = bias # Delete un-used branches for name, para in self.named_parameters(): if 'reparam_conv' in name: continue para.detach_() self.__delattr__('conv_kxk') self.__delattr__('conv_1x1') self.__delattr__('identity') self.__delattr__('drop_path') def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: """ Method to obtain re-parameterized kernel and bias. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 """ # get weights and bias of scale branch kernel_1x1 = 0 bias_1x1 = 0 if self.conv_1x1 is not None: kernel_1x1, bias_1x1 = self._fuse_bn_tensor(self.conv_1x1) # Pad scale branch kernel to match conv branch kernel size. pad = self.conv_kxk.conv.kernel_size[0] // 2 kernel_1x1 = torch.nn.functional.pad(kernel_1x1, [pad, pad, pad, pad]) # get weights and bias of skip branch kernel_identity = 0 bias_identity = 0 if self.identity is not None: kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity) # get weights and bias of conv branches kernel_conv, bias_conv = self._fuse_bn_tensor(self.conv_kxk) kernel_final = kernel_conv + kernel_1x1 + kernel_identity bias_final = bias_conv + bias_1x1 + bias_identity return kernel_final, bias_final def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]: """ Method to fuse batchnorm layer with preceeding conv layer. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 """ if isinstance(branch, ConvNormAct): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, 'id_tensor'): in_chs = self.conv_kxk.conv.in_channels input_dim = in_chs // self.groups kernel_size = self.conv_kxk.conv.kernel_size kernel_value = torch.zeros_like(self.conv_kxk.conv.weight) for i in range(in_chs): kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1 self.id_tensor = kernel_value kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std class MobileOneBlock(nn.Module): """ MobileOne building block. This block has a multi-branched architecture at train-time and plain-CNN style architecture at inference time For more details, please refer to our paper: `An Improved One millisecond Mobile Backbone` - https://arxiv.org/pdf/2206.04040.pdf """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: Tuple[int, int] = (1, 1), bottle_ratio: float = 1.0, # unused group_size: Optional[int] = None, downsample: str = '', # unused inference_mode: bool = False, num_conv_branches: int = 1, layers: LayerFn = None, drop_block: Callable = None, drop_path_rate: float = 0., ) -> None: """ Construct a MobileOneBlock module. """ super(MobileOneBlock, self).__init__() self.num_conv_branches = num_conv_branches self.groups = groups = num_groups(group_size, in_chs) layers = layers or LayerFn() if inference_mode: self.reparam_conv = nn.Conv2d( in_channels=in_chs, out_channels=out_chs, kernel_size=kernel_size, stride=stride, dilation=dilation, groups=groups, bias=True) else: self.reparam_conv = None # Re-parameterizable skip connection use_ident = in_chs == out_chs and stride == 1 and dilation[0] == dilation[1] self.identity = layers.norm_act(out_chs, apply_act=False) if use_ident else None # Re-parameterizable conv branches convs = [] for _ in range(self.num_conv_branches): convs.append(layers.conv_norm_act( in_chs, out_chs, kernel_size=kernel_size, stride=stride, groups=groups, apply_act=False)) self.conv_kxk = nn.ModuleList(convs) # Re-parameterizable scale branch self.conv_scale = None if kernel_size > 1: self.conv_scale = layers.conv_norm_act( in_chs, out_chs, kernel_size=1, stride=stride, groups=groups, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. and use_ident else nn.Identity() self.attn = nn.Identity() if layers.attn is None else layers.attn(out_chs) self.act = layers.act(inplace=True) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Apply forward pass. """ # Inference mode forward pass. if self.reparam_conv is not None: return self.act(self.attn(self.reparam_conv(x))) # Multi-branched train-time forward pass. # Skip branch output identity_out = 0 if self.identity is not None: identity_out = self.identity(x) # Scale branch output scale_out = 0 if self.conv_scale is not None: scale_out = self.conv_scale(x) # Other branches out = scale_out for ck in self.conv_kxk: out += ck(x) out = self.drop_path(out) out += identity_out return self.act(self.attn(out)) def reparameterize(self): """ Following works like `RepVGG: Making VGG-style ConvNets Great Again` - https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched architecture used at training time to obtain a plain CNN-like structure for inference. """ if self.reparam_conv is not None: return kernel, bias = self._get_kernel_bias() self.reparam_conv = nn.Conv2d( in_channels=self.conv_kxk[0].conv.in_channels, out_channels=self.conv_kxk[0].conv.out_channels, kernel_size=self.conv_kxk[0].conv.kernel_size, stride=self.conv_kxk[0].conv.stride, padding=self.conv_kxk[0].conv.padding, dilation=self.conv_kxk[0].conv.dilation, groups=self.conv_kxk[0].conv.groups, bias=True) self.reparam_conv.weight.data = kernel self.reparam_conv.bias.data = bias # Delete un-used branches for name, para in self.named_parameters(): if 'reparam_conv' in name: continue para.detach_() self.__delattr__('conv_kxk') self.__delattr__('conv_scale') self.__delattr__('identity') self.__delattr__('drop_path') def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: """ Method to obtain re-parameterized kernel and bias. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 """ # get weights and bias of scale branch kernel_scale = 0 bias_scale = 0 if self.conv_scale is not None: kernel_scale, bias_scale = self._fuse_bn_tensor(self.conv_scale) # Pad scale branch kernel to match conv branch kernel size. pad = self.conv_kxk[0].conv.kernel_size[0] // 2 kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) # get weights and bias of skip branch kernel_identity = 0 bias_identity = 0 if self.identity is not None: kernel_identity, bias_identity = self._fuse_bn_tensor(self.identity) # get weights and bias of conv branches kernel_conv = 0 bias_conv = 0 for ix in range(self.num_conv_branches): _kernel, _bias = self._fuse_bn_tensor(self.conv_kxk[ix]) kernel_conv += _kernel bias_conv += _bias kernel_final = kernel_conv + kernel_scale + kernel_identity bias_final = bias_conv + bias_scale + bias_identity return kernel_final, bias_final def _fuse_bn_tensor(self, branch) -> Tuple[torch.Tensor, torch.Tensor]: """ Method to fuse batchnorm layer with preceeding conv layer. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 """ if isinstance(branch, ConvNormAct): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, 'id_tensor'): in_chs = self.conv_kxk[0].conv.in_channels input_dim = in_chs // self.groups kernel_size = self.conv_kxk[0].conv.kernel_size kernel_value = torch.zeros_like(self.conv_kxk[0].conv.weight) for i in range(in_chs): kernel_value[i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2] = 1 self.id_tensor = kernel_value kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std class SelfAttnBlock(nn.Module): """ ResNet-like Bottleneck Block - 1x1 - optional kxk - self attn - 1x1 """ def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 1, dilation: Tuple[int, int] = (1, 1), bottle_ratio: float = 1., group_size: Optional[int] = None, downsample: str = 'avg', extra_conv: bool = False, linear_out: bool = False, bottle_in: bool = False, post_attn_na: bool = True, feat_size: Optional[Tuple[int, int]] = None, layers: LayerFn = None, drop_block: Callable = None, drop_path_rate: float = 0., ): super(SelfAttnBlock, self).__init__() assert layers is not None mid_chs = make_divisible((in_chs if bottle_in else out_chs) * bottle_ratio) groups = num_groups(group_size, mid_chs) self.shortcut = create_shortcut( downsample, in_chs, out_chs, stride=stride, dilation=dilation, apply_act=False, layers=layers, ) self.conv1_1x1 = layers.conv_norm_act(in_chs, mid_chs, 1) if extra_conv: self.conv2_kxk = layers.conv_norm_act( mid_chs, mid_chs, kernel_size, stride=stride, dilation=dilation[0], groups=groups, drop_layer=drop_block, ) stride = 1 # striding done via conv if enabled else: self.conv2_kxk = nn.Identity() opt_kwargs = {} if feat_size is None else dict(feat_size=feat_size) # FIXME need to dilate self attn to have dilated network support, moop moop self.self_attn = layers.self_attn(mid_chs, stride=stride, **opt_kwargs) self.post_attn = layers.norm_act(mid_chs) if post_attn_na else nn.Identity() self.conv3_1x1 = layers.conv_norm_act(mid_chs, out_chs, 1, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() self.act = nn.Identity() if linear_out else layers.act(inplace=True) def init_weights(self, zero_init_last: bool = False): if zero_init_last and self.shortcut is not None and getattr(self.conv3_1x1.bn, 'weight', None) is not None: nn.init.zeros_(self.conv3_1x1.bn.weight) if hasattr(self.self_attn, 'reset_parameters'): self.self_attn.reset_parameters() def forward(self, x): shortcut = x x = self.conv1_1x1(x) x = self.conv2_kxk(x) x = self.self_attn(x) x = self.post_attn(x) x = self.conv3_1x1(x) x = self.drop_path(x) if self.shortcut is not None: x = x + self.shortcut(shortcut) return self.act(x) _block_registry = dict( basic=BasicBlock, bottle=BottleneckBlock, dark=DarkBlock, edge=EdgeBlock, rep=RepVggBlock, one=MobileOneBlock, self_attn=SelfAttnBlock, ) def register_block(block_type:str, block_fn: nn.Module): _block_registry[block_type] = block_fn def create_block(block: Union[str, nn.Module], **kwargs): if isinstance(block, (nn.Module, partial)): return block(**kwargs) assert block in _block_registry, f'Unknown block type ({block}' return _block_registry[block](**kwargs) class Stem(nn.Sequential): def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, stride: int = 4, pool: str = 'maxpool', num_rep: int = 3, num_act: Optional[int] = None, chs_decay: float = 0.5, layers: LayerFn = None, ): super().__init__() assert stride in (2, 4) layers = layers or LayerFn() if isinstance(out_chs, (list, tuple)): num_rep = len(out_chs) stem_chs = out_chs else: stem_chs = [round(out_chs * chs_decay ** i) for i in range(num_rep)][::-1] self.stride = stride self.feature_info = [] # track intermediate features prev_feat = '' stem_strides = [2] + [1] * (num_rep - 1) if stride == 4 and not pool: # set last conv in stack to be strided if stride == 4 and no pooling layer stem_strides[-1] = 2 num_act = num_rep if num_act is None else num_act # if num_act < num_rep, first convs in stack won't have bn + act stem_norm_acts = [False] * (num_rep - num_act) + [True] * num_act prev_chs = in_chs curr_stride = 1 for i, (ch, s, na) in enumerate(zip(stem_chs, stem_strides, stem_norm_acts)): layer_fn = layers.conv_norm_act if na else create_conv2d conv_name = f'conv{i + 1}' if i > 0 and s > 1: self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) self.add_module(conv_name, layer_fn(prev_chs, ch, kernel_size=kernel_size, stride=s)) prev_chs = ch curr_stride *= s prev_feat = conv_name if pool and 'max' in pool.lower(): self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) self.add_module('pool', nn.MaxPool2d(3, 2, 1)) curr_stride *= 2 prev_feat = 'pool' self.feature_info.append(dict(num_chs=prev_chs, reduction=curr_stride, module=prev_feat)) assert curr_stride == stride def create_byob_stem( in_chs: int, out_chs: int, stem_type: str = '', pool_type: str = '', feat_prefix: str = 'stem', layers: LayerFn = None, ): layers = layers or LayerFn() assert stem_type in ('', 'quad', 'quad2', 'tiered', 'deep', 'rep', 'one', '7x7', '3x3') if 'quad' in stem_type: # based on NFNet stem, stack of 4 3x3 convs num_act = 2 if 'quad2' in stem_type else None stem = Stem(in_chs, out_chs, num_rep=4, num_act=num_act, pool=pool_type, layers=layers) elif 'tiered' in stem_type: # 3x3 stack of 3 convs as in my ResNet-T stem = Stem(in_chs, (3 * out_chs // 8, out_chs // 2, out_chs), pool=pool_type, layers=layers) elif 'deep' in stem_type: # 3x3 stack of 3 convs as in ResNet-D stem = Stem(in_chs, out_chs, num_rep=3, chs_decay=1.0, pool=pool_type, layers=layers) elif 'rep' in stem_type: stem = RepVggBlock(in_chs, out_chs, stride=2, layers=layers) elif 'one' in stem_type: stem = MobileOneBlock(in_chs, out_chs, kernel_size=3, stride=2, layers=layers) elif '7x7' in stem_type: # 7x7 stem conv as in ResNet if pool_type: stem = Stem(in_chs, out_chs, 7, num_rep=1, pool=pool_type, layers=layers) else: stem = layers.conv_norm_act(in_chs, out_chs, 7, stride=2) else: # 3x3 stem conv as in RegNet is the default if pool_type: stem = Stem(in_chs, out_chs, 3, num_rep=1, pool=pool_type, layers=layers) else: stem = layers.conv_norm_act(in_chs, out_chs, 3, stride=2) if isinstance(stem, Stem): feature_info = [dict(f, module='.'.join([feat_prefix, f['module']])) for f in stem.feature_info] else: feature_info = [dict(num_chs=out_chs, reduction=2, module=feat_prefix)] return stem, feature_info def reduce_feat_size(feat_size, stride=2): return None if feat_size is None else tuple([s // stride for s in feat_size]) def override_kwargs(block_kwargs, model_kwargs): """ Override model level attn/self-attn/block kwargs w/ block level NOTE: kwargs are NOT merged across levels, block_kwargs will fully replace model_kwargs for the block if set to anything that isn't None. i.e. an empty block_kwargs dict will remove kwargs set at model level for that block """ out_kwargs = block_kwargs if block_kwargs is not None else model_kwargs return out_kwargs or {} # make sure None isn't returned def update_block_kwargs(block_kwargs: Dict[str, Any], block_cfg: ByoBlockCfg, model_cfg: ByoModelCfg, ): layer_fns = block_kwargs['layers'] # override attn layer / args with block local config attn_set = block_cfg.attn_layer is not None if attn_set or block_cfg.attn_kwargs is not None: # override attn layer config if attn_set and not block_cfg.attn_layer: # empty string for attn_layer type will disable attn for this block attn_layer = None else: attn_kwargs = override_kwargs(block_cfg.attn_kwargs, model_cfg.attn_kwargs) attn_layer = block_cfg.attn_layer or model_cfg.attn_layer attn_layer = partial(get_attn(attn_layer), **attn_kwargs) if attn_layer is not None else None layer_fns = replace(layer_fns, attn=attn_layer) # override self-attn layer / args with block local cfg self_attn_set = block_cfg.self_attn_layer is not None if self_attn_set or block_cfg.self_attn_kwargs is not None: # override attn layer config if self_attn_set and not block_cfg.self_attn_layer: # attn_layer == '' # empty string for self_attn_layer type will disable attn for this block self_attn_layer = None else: self_attn_kwargs = override_kwargs(block_cfg.self_attn_kwargs, model_cfg.self_attn_kwargs) self_attn_layer = block_cfg.self_attn_layer or model_cfg.self_attn_layer self_attn_layer = partial(get_attn(self_attn_layer), **self_attn_kwargs) \ if self_attn_layer is not None else None layer_fns = replace(layer_fns, self_attn=self_attn_layer) block_kwargs['layers'] = layer_fns # add additional block_kwargs specified in block_cfg or model_cfg, precedence to block if set block_kwargs.update(override_kwargs(block_cfg.block_kwargs, model_cfg.block_kwargs)) def create_byob_stages( cfg: ByoModelCfg, drop_path_rate: float, output_stride: int, stem_feat: Dict[str, Any], feat_size: Optional[int] = None, layers: Optional[LayerFn] = None, block_kwargs_fn: Optional[Callable] = update_block_kwargs, ): layers = layers or LayerFn() feature_info = [] block_cfgs = [expand_blocks_cfg(s) for s in cfg.blocks] depths = [sum([bc.d for bc in stage_bcs]) for stage_bcs in block_cfgs] dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] dilation = 1 net_stride = stem_feat['reduction'] prev_chs = stem_feat['num_chs'] prev_feat = stem_feat stages = [] for stage_idx, stage_block_cfgs in enumerate(block_cfgs): stride = stage_block_cfgs[0].s if stride != 1 and prev_feat: feature_info.append(prev_feat) if net_stride >= output_stride and stride > 1: dilation *= stride stride = 1 net_stride *= stride first_dilation = 1 if dilation in (1, 2) else 2 blocks = [] for block_idx, block_cfg in enumerate(stage_block_cfgs): out_chs = make_divisible(block_cfg.c * cfg.width_factor) group_size = block_cfg.gs if isinstance(group_size, Callable): group_size = group_size(out_chs, block_idx) block_kwargs = dict( # Blocks used in this model must accept these arguments in_chs=prev_chs, out_chs=out_chs, stride=stride if block_idx == 0 else 1, dilation=(first_dilation, dilation), group_size=group_size, bottle_ratio=block_cfg.br, downsample=cfg.downsample, drop_path_rate=dpr[stage_idx][block_idx], layers=layers, ) if block_cfg.type in ('self_attn',): # add feat_size arg for blocks that support/need it block_kwargs['feat_size'] = feat_size block_kwargs_fn(block_kwargs, block_cfg=block_cfg, model_cfg=cfg) blocks += [create_block(block_cfg.type, **block_kwargs)] first_dilation = dilation prev_chs = out_chs if stride > 1 and block_idx == 0: feat_size = reduce_feat_size(feat_size, stride) stages += [nn.Sequential(*blocks)] prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') feature_info.append(prev_feat) return nn.Sequential(*stages), feature_info def get_layer_fns(cfg: ByoModelCfg): act = get_act_layer(cfg.act_layer) norm_act = get_norm_act_layer(norm_layer=cfg.norm_layer, act_layer=act) conv_norm_act = partial(ConvNormAct, norm_layer=cfg.norm_layer, act_layer=act) attn = partial(get_attn(cfg.attn_layer), **cfg.attn_kwargs) if cfg.attn_layer else None self_attn = partial(get_attn(cfg.self_attn_layer), **cfg.self_attn_kwargs) if cfg.self_attn_layer else None layer_fn = LayerFn(conv_norm_act=conv_norm_act, norm_act=norm_act, act=act, attn=attn, self_attn=self_attn) return layer_fn class ByobNet(nn.Module): """ 'Bring-your-own-blocks' Net A flexible network backbone that allows building model stem + blocks via dataclass cfg definition w/ factory functions for module instantiation. Current assumption is that both stem and blocks are in conv-bn-act order (w/ block ending in act). """ def __init__( self, cfg: ByoModelCfg, num_classes: int = 1000, in_chans: int = 3, global_pool: str = 'avg', output_stride: int = 32, img_size: Optional[Union[int, Tuple[int, int]]] = None, drop_rate: float = 0., drop_path_rate: float =0., zero_init_last: bool = True, **kwargs, ): """ Args: cfg: Model architecture configuration. num_classes: Number of classifier classes. in_chans: Number of input channels. global_pool: Global pooling type. output_stride: Output stride of network, one of (8, 16, 32). img_size: Image size for fixed image size models (i.e. self-attn). drop_rate: Classifier dropout rate. drop_path_rate: Stochastic depth drop-path rate. zero_init_last: Zero-init last weight of residual path. **kwargs: Extra kwargs overlayed onto cfg. """ super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False cfg = replace(cfg, **kwargs) # overlay kwargs onto cfg layers = get_layer_fns(cfg) if cfg.fixed_input_size: assert img_size is not None, 'img_size argument is required for fixed input size model' feat_size = to_2tuple(img_size) if img_size is not None else None self.feature_info = [] stem_chs = int(round((cfg.stem_chs or cfg.blocks[0].c) * cfg.width_factor)) self.stem, stem_feat = create_byob_stem(in_chans, stem_chs, cfg.stem_type, cfg.stem_pool, layers=layers) self.feature_info.extend(stem_feat[:-1]) feat_size = reduce_feat_size(feat_size, stride=stem_feat[-1]['reduction']) self.stages, stage_feat = create_byob_stages( cfg, drop_path_rate, output_stride, stem_feat[-1], layers=layers, feat_size=feat_size, ) self.feature_info.extend(stage_feat[:-1]) prev_chs = stage_feat[-1]['num_chs'] if cfg.num_features: self.num_features = int(round(cfg.width_factor * cfg.num_features)) self.final_conv = layers.conv_norm_act(prev_chs, self.num_features, 1) else: self.num_features = prev_chs self.final_conv = nn.Identity() self.feature_info += [ dict(num_chs=self.num_features, reduction=stage_feat[-1]['reduction'], module='final_conv')] self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, ) # init weights named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', blocks=[ (r'^stages\.(\d+)' if coarse else r'^stages\.(\d+)\.(\d+)', None), (r'^final_conv', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool='avg'): self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.stages, x) else: x = self.stages(x) x = self.final_conv(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module, name='', zero_init_last=False): if isinstance(module, nn.Conv2d): fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.01) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.BatchNorm2d): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): module.init_weights(zero_init_last=zero_init_last) model_cfgs = dict( gernet_l=ByoModelCfg( blocks=( ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), ByoBlockCfg(type='bottle', d=5, c=640, s=2, gs=1, br=3.), ByoBlockCfg(type='bottle', d=4, c=640, s=1, gs=1, br=3.), ), stem_chs=32, stem_pool=None, num_features=2560, ), gernet_m=ByoModelCfg( blocks=( ByoBlockCfg(type='basic', d=1, c=128, s=2, gs=0, br=1.), ByoBlockCfg(type='basic', d=2, c=192, s=2, gs=0, br=1.), ByoBlockCfg(type='bottle', d=6, c=640, s=2, gs=0, br=1 / 4), ByoBlockCfg(type='bottle', d=4, c=640, s=2, gs=1, br=3.), ByoBlockCfg(type='bottle', d=1, c=640, s=1, gs=1, br=3.), ), stem_chs=32, stem_pool=None, num_features=2560, ), gernet_s=ByoModelCfg( blocks=( ByoBlockCfg(type='basic', d=1, c=48, s=2, gs=0, br=1.), ByoBlockCfg(type='basic', d=3, c=48, s=2, gs=0, br=1.), ByoBlockCfg(type='bottle', d=7, c=384, s=2, gs=0, br=1 / 4), ByoBlockCfg(type='bottle', d=2, c=560, s=2, gs=1, br=3.), ByoBlockCfg(type='bottle', d=1, c=256, s=1, gs=1, br=3.), ), stem_chs=13, stem_pool=None, num_features=1920, ), repvgg_a0=ByoModelCfg( blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(0.75, 0.75, 0.75, 2.5)), stem_type='rep', stem_chs=48, ), repvgg_a1=ByoModelCfg( blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1, 1, 1, 2.5)), stem_type='rep', stem_chs=64, ), repvgg_a2=ByoModelCfg( blocks=_rep_vgg_bcfg(d=(2, 4, 14, 1), wf=(1.5, 1.5, 1.5, 2.75)), stem_type='rep', stem_chs=64, ), repvgg_b0=ByoModelCfg( blocks=_rep_vgg_bcfg(wf=(1., 1., 1., 2.5)), stem_type='rep', stem_chs=64, ), repvgg_b1=ByoModelCfg( blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.)), stem_type='rep', stem_chs=64, ), repvgg_b1g4=ByoModelCfg( blocks=_rep_vgg_bcfg(wf=(2., 2., 2., 4.), groups=4), stem_type='rep', stem_chs=64, ), repvgg_b2=ByoModelCfg( blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.)), stem_type='rep', stem_chs=64, ), repvgg_b2g4=ByoModelCfg( blocks=_rep_vgg_bcfg(wf=(2.5, 2.5, 2.5, 5.), groups=4), stem_type='rep', stem_chs=64, ), repvgg_b3=ByoModelCfg( blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.)), stem_type='rep', stem_chs=64, ), repvgg_b3g4=ByoModelCfg( blocks=_rep_vgg_bcfg(wf=(3., 3., 3., 5.), groups=4), stem_type='rep', stem_chs=64, ), repvgg_d2se=ByoModelCfg( blocks=_rep_vgg_bcfg(d=(8, 14, 24, 1), wf=(2.5, 2.5, 2.5, 5.)), stem_type='rep', stem_chs=64, attn_layer='se', attn_kwargs=dict(rd_ratio=0.0625, rd_divisor=1), ), # 4 x conv stem w/ 2 act, no maxpool, 2,4,6,4 repeats, group size 32 in first 3 blocks # DW convs in last block, 2048 pre-FC, silu act resnet51q=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), ), stem_chs=128, stem_type='quad2', stem_pool=None, num_features=2048, act_layer='silu', ), # 4 x conv stem w/ 4 act, no maxpool, 1,4,6,4 repeats, edge block first, group size 32 in next 2 blocks # DW convs in last block, 4 conv for each bottle block, 2048 pre-FC, silu act resnet61q=ByoModelCfg( blocks=( ByoBlockCfg(type='edge', d=1, c=256, s=1, gs=0, br=1.0, block_kwargs=dict()), ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1536, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=1536, s=2, gs=1, br=1.0), ), stem_chs=128, stem_type='quad', stem_pool=None, num_features=2048, act_layer='silu', block_kwargs=dict(extra_conv=True), ), # A series of ResNeXt-26 models w/ one of none, GC, SE, ECA, BAT attn, group size 32, SiLU act, # and a tiered stem w/ maxpool resnext26ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', ), gcresnext26ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='gca', ), seresnext26ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='se', ), eca_resnext26ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='eca', ), bat_resnext26ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=2, c=2048, s=2, gs=32, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='bat', attn_kwargs=dict(block_size=8) ), # ResNet-32 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, no pre-fc feat layer, tiered stem w/o maxpool resnet32ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='', num_features=0, act_layer='silu', ), # ResNet-33 (2, 3, 3, 2) models w/ no attn, no groups, SiLU act, 1280 pre-FC feat, tiered stem w/o maxpool resnet33ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu', ), # A series of ResNet-33 (2, 3, 3, 2) models w/ one of GC, SE, ECA attn, no groups, SiLU act, 1280 pre-FC feat # and a tiered stem w/ no maxpool gcresnet33ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu', attn_layer='gca', ), seresnet33ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu', attn_layer='se', ), eca_resnet33ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=3, c=1536, s=2, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=1536, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='', num_features=1280, act_layer='silu', attn_layer='eca', ), gcresnet50t=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=256, s=1, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1024, s=2, br=0.25), ByoBlockCfg(type='bottle', d=3, c=2048, s=2, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='', attn_layer='gca', ), gcresnext50ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=4, c=512, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=6, c=1024, s=2, gs=32, br=0.25), ByoBlockCfg(type='bottle', d=3, c=2048, s=2, gs=32, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='gca', ), # experimental models, closer to a RegNetZ than a ResNet. Similar to EfficientNets but w/ groups instead of DW regnetz_b16=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3), ), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), regnetz_c16=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4), ), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), regnetz_d32=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=32, br=4), ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=32, br=4), ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=32, br=4), ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=32, br=4), ), stem_chs=64, stem_type='tiered', stem_pool='', downsample='', num_features=1792, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), regnetz_d8=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4), ), stem_chs=64, stem_type='tiered', stem_pool='', downsample='', num_features=1792, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), regnetz_e8=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=96, s=1, gs=8, br=4), ByoBlockCfg(type='bottle', d=8, c=192, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=16, c=384, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=3, c=512, s=2, gs=8, br=4), ), stem_chs=64, stem_type='tiered', stem_pool='', downsample='', num_features=2048, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), # experimental EvoNorm configs regnetz_b16_evos=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=3), ), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', norm_layer=partial(EvoNorm2dS0a, group_size=16), attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), regnetz_c16_evos=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=12, c=192, s=2, gs=16, br=4), ByoBlockCfg(type='bottle', d=2, c=288, s=2, gs=16, br=4), ), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', norm_layer=partial(EvoNorm2dS0a, group_size=16), attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), regnetz_d8_evos=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=64, s=1, gs=8, br=4), ByoBlockCfg(type='bottle', d=6, c=128, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=12, c=256, s=2, gs=8, br=4), ByoBlockCfg(type='bottle', d=3, c=384, s=2, gs=8, br=4), ), stem_chs=64, stem_type='deep', stem_pool='', downsample='', num_features=1792, act_layer='silu', norm_layer=partial(EvoNorm2dS0a, group_size=16), attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), ), mobileone_s0=ByoModelCfg( blocks=_mobileone_bcfg(wf=(0.75, 1.0, 1.0, 2.), num_conv_branches=4), stem_type='one', stem_chs=48, ), mobileone_s1=ByoModelCfg( blocks=_mobileone_bcfg(wf=(1.5, 1.5, 2.0, 2.5)), stem_type='one', stem_chs=64, ), mobileone_s2=ByoModelCfg( blocks=_mobileone_bcfg(wf=(1.5, 2.0, 2.5, 4.0)), stem_type='one', stem_chs=64, ), mobileone_s3=ByoModelCfg( blocks=_mobileone_bcfg(wf=(2.0, 2.5, 3.0, 4.0)), stem_type='one', stem_chs=64, ), mobileone_s4=ByoModelCfg( blocks=_mobileone_bcfg(wf=(3.0, 3.5, 3.5, 4.0), se_blocks=(0, 0, 5, 1)), stem_type='one', stem_chs=64, ), ) def _create_byobnet(variant, pretrained=False, **kwargs): return build_model_with_cfg( ByobNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True), **kwargs) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv', 'classifier': 'head.fc', **kwargs } def _cfgr(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ # GPU-Efficient (ResNet) weights 'gernet_s.idstcv_in1k': _cfg(hf_hub_id='timm/'), 'gernet_m.idstcv_in1k': _cfg(hf_hub_id='timm/'), 'gernet_l.idstcv_in1k': _cfg(hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)), # RepVGG weights 'repvgg_a0.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_a1.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_a2.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b0.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b1.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b1g4.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b2.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b2g4.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b3.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_b3g4.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit'), 'repvgg_d2se.rvgg_in1k': _cfg( hf_hub_id='timm/', first_conv=('stem.conv_kxk.conv', 'stem.conv_1x1.conv'), license='mit', input_size=(3, 320, 320), pool_size=(10, 10), crop_pct=1.0, ), # experimental ResNet configs 'resnet51q.ra2_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet51q_ra2-d47dcc76.pth', first_conv='stem.conv1', input_size=(3, 256, 256), pool_size=(8, 8), test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnet61q.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet61q_ra2-6afc536c.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), # ResNeXt-26 models with different attention in Bottleneck blocks 'resnext26ts.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnext26ts_256_ra2-8bbd9106.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'seresnext26ts.ch_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnext26ts_256-6f0d74a3.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnext26ts.ch_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext26ts_256-e414378b.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'eca_resnext26ts.ch_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnext26ts_256-5a1d030f.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'bat_resnext26ts.ch_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/bat_resnext26ts_256-fa6fd595.pth', min_input_size=(3, 256, 256)), # ResNet-32 / 33 models with different attention in Bottleneck blocks 'resnet32ts.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet32ts_256-aacf5250.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'resnet33ts.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/resnet33ts_256-e91b09a4.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnet33ts.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet33ts_256-0e0cd345.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'seresnet33ts.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/seresnet33ts_256-f8ad44d9.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'eca_resnet33ts.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_resnet33ts_256-8f98face.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnet50t.ra2_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnet50t_256-96374d1c.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'gcresnext50ts.ch_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/gcresnext50ts_256-3e0f515e.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), # custom `timm` specific RegNetZ inspired models w/ different sizing from paper 'regnetz_b16.ra3_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_b_raa-677d9606.pth', first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.94, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'regnetz_c16.ra3_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_c_rab2_256-a54bf36a.pth', first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'regnetz_d32.ra3_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d_rab_256-b8073a89.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320)), 'regnetz_d8.ra3_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_d8_bh-afc03c55.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'regnetz_e8.ra3_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/regnetz_e8_bh-aace8e6e.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.94, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'regnetz_b16_evos.untrained': _cfgr( first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), input_size=(3, 224, 224), pool_size=(7, 7), crop_pct=0.95, test_input_size=(3, 288, 288)), 'regnetz_c16_evos.ch_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_c16_evos_ch-d8311942.pth', first_conv='stem.conv', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320)), 'regnetz_d8_evos.ch_in1k': _cfgr( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/regnetz_d8_evos_ch-2bc12646.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), 'mobileone_s0.apple_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.875, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), ), 'mobileone_s1.apple_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), ), 'mobileone_s2.apple_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), ), 'mobileone_s3.apple_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), ), 'mobileone_s4.apple_in1k': _cfg( hf_hub_id='timm/', crop_pct=0.9, first_conv=('stem.conv_kxk.0.conv', 'stem.conv_scale.conv'), ), }) @register_model def gernet_l(pretrained=False, **kwargs) -> ByobNet: """ GEResNet-Large (GENet-Large from official impl) `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 """ return _create_byobnet('gernet_l', pretrained=pretrained, **kwargs) @register_model def gernet_m(pretrained=False, **kwargs) -> ByobNet: """ GEResNet-Medium (GENet-Normal from official impl) `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 """ return _create_byobnet('gernet_m', pretrained=pretrained, **kwargs) @register_model def gernet_s(pretrained=False, **kwargs) -> ByobNet: """ EResNet-Small (GENet-Small from official impl) `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 """ return _create_byobnet('gernet_s', pretrained=pretrained, **kwargs) @register_model def repvgg_a0(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-A0 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_a0', pretrained=pretrained, **kwargs) @register_model def repvgg_a1(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-A1 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_a1', pretrained=pretrained, **kwargs) @register_model def repvgg_a2(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-A2 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_a2', pretrained=pretrained, **kwargs) @register_model def repvgg_b0(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-B0 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_b0', pretrained=pretrained, **kwargs) @register_model def repvgg_b1(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-B1 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_b1', pretrained=pretrained, **kwargs) @register_model def repvgg_b1g4(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-B1g4 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_b1g4', pretrained=pretrained, **kwargs) @register_model def repvgg_b2(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-B2 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_b2', pretrained=pretrained, **kwargs) @register_model def repvgg_b2g4(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-B2g4 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_b2g4', pretrained=pretrained, **kwargs) @register_model def repvgg_b3(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-B3 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_b3', pretrained=pretrained, **kwargs) @register_model def repvgg_b3g4(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-B3g4 `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_b3g4', pretrained=pretrained, **kwargs) @register_model def repvgg_d2se(pretrained=False, **kwargs) -> ByobNet: """ RepVGG-D2se `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 """ return _create_byobnet('repvgg_d2se', pretrained=pretrained, **kwargs) @register_model def resnet51q(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('resnet51q', pretrained=pretrained, **kwargs) @register_model def resnet61q(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('resnet61q', pretrained=pretrained, **kwargs) @register_model def resnext26ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('resnext26ts', pretrained=pretrained, **kwargs) @register_model def gcresnext26ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('gcresnext26ts', pretrained=pretrained, **kwargs) @register_model def seresnext26ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('seresnext26ts', pretrained=pretrained, **kwargs) @register_model def eca_resnext26ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('eca_resnext26ts', pretrained=pretrained, **kwargs) @register_model def bat_resnext26ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('bat_resnext26ts', pretrained=pretrained, **kwargs) @register_model def resnet32ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('resnet32ts', pretrained=pretrained, **kwargs) @register_model def resnet33ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('resnet33ts', pretrained=pretrained, **kwargs) @register_model def gcresnet33ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('gcresnet33ts', pretrained=pretrained, **kwargs) @register_model def seresnet33ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('seresnet33ts', pretrained=pretrained, **kwargs) @register_model def eca_resnet33ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('eca_resnet33ts', pretrained=pretrained, **kwargs) @register_model def gcresnet50t(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('gcresnet50t', pretrained=pretrained, **kwargs) @register_model def gcresnext50ts(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('gcresnext50ts', pretrained=pretrained, **kwargs) @register_model def regnetz_b16(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_b16', pretrained=pretrained, **kwargs) @register_model def regnetz_c16(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_c16', pretrained=pretrained, **kwargs) @register_model def regnetz_d32(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_d32', pretrained=pretrained, **kwargs) @register_model def regnetz_d8(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_d8', pretrained=pretrained, **kwargs) @register_model def regnetz_e8(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_e8', pretrained=pretrained, **kwargs) @register_model def regnetz_b16_evos(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_b16_evos', pretrained=pretrained, **kwargs) @register_model def regnetz_c16_evos(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_c16_evos', pretrained=pretrained, **kwargs) @register_model def regnetz_d8_evos(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('regnetz_d8_evos', pretrained=pretrained, **kwargs) @register_model def mobileone_s0(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('mobileone_s0', pretrained=pretrained, **kwargs) @register_model def mobileone_s1(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('mobileone_s1', pretrained=pretrained, **kwargs) @register_model def mobileone_s2(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('mobileone_s2', pretrained=pretrained, **kwargs) @register_model def mobileone_s3(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('mobileone_s3', pretrained=pretrained, **kwargs) @register_model def mobileone_s4(pretrained=False, **kwargs) -> ByobNet: """ """ return _create_byobnet('mobileone_s4', pretrained=pretrained, **kwargs)