import torch import torch.nn as nn from timm.layers import create_act_layer, set_layer_config import importlib import os torch_backend = os.environ.get('TORCH_BACKEND') if torch_backend is not None: importlib.import_module(torch_backend) torch_device = os.environ.get('TORCH_DEVICE', 'cpu') class MLP(nn.Module): def __init__(self, act_layer="relu", inplace=True): super(MLP, self).__init__() self.fc1 = nn.Linear(1000, 100) self.act = create_act_layer(act_layer, inplace=inplace) self.fc2 = nn.Linear(100, 10) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x def _run_act_layer_grad(act_type, inplace=True): x = torch.rand(10, 1000) * 10 m = MLP(act_layer=act_type, inplace=inplace) def _run(x, act_layer=''): if act_layer: # replace act layer if set m.act = create_act_layer(act_layer, inplace=inplace) out = m(x) l = (out - 0).pow(2).sum() return l x = x.to(device=torch_device) m.to(device=torch_device) out_me = _run(x) with set_layer_config(scriptable=True): out_jit = _run(x, act_type) assert torch.isclose(out_jit, out_me) with set_layer_config(no_jit=True): out_basic = _run(x, act_type) assert torch.isclose(out_basic, out_jit) def test_swish_grad(): for _ in range(100): _run_act_layer_grad('swish') def test_mish_grad(): for _ in range(100): _run_act_layer_grad('mish') def test_hard_sigmoid_grad(): for _ in range(100): _run_act_layer_grad('hard_sigmoid', inplace=None) def test_hard_swish_grad(): for _ in range(100): _run_act_layer_grad('hard_swish') def test_hard_mish_grad(): for _ in range(100): _run_act_layer_grad('hard_mish')