import os from typing import Any, Dict, Optional, Union from urllib.parse import urlsplit from timm.layers import set_layer_config from ._helpers import load_checkpoint from ._hub import load_model_config_from_hf from ._pretrained import PretrainedCfg from ._registry import is_model, model_entrypoint, split_model_name_tag __all__ = ['parse_model_name', 'safe_model_name', 'create_model'] def parse_model_name(model_name: str): if model_name.startswith('hf_hub'): # NOTE for backwards compat, deprecate hf_hub use model_name = model_name.replace('hf_hub', 'hf-hub') parsed = urlsplit(model_name) assert parsed.scheme in ('', 'timm', 'hf-hub') if parsed.scheme == 'hf-hub': # FIXME may use fragment as revision, currently `@` in URI path return parsed.scheme, parsed.path else: model_name = os.path.split(parsed.path)[-1] return 'timm', model_name def safe_model_name(model_name: str, remove_source: bool = True): # return a filename / path safe model name def make_safe(name): return ''.join(c if c.isalnum() else '_' for c in name).rstrip('_') if remove_source: model_name = parse_model_name(model_name)[-1] return make_safe(model_name) def create_model( model_name: str, pretrained: bool = False, pretrained_cfg: Optional[Union[str, Dict[str, Any], PretrainedCfg]] = None, pretrained_cfg_overlay: Optional[Dict[str, Any]] = None, checkpoint_path: str = '', scriptable: Optional[bool] = None, exportable: Optional[bool] = None, no_jit: Optional[bool] = None, **kwargs, ): """Create a model. Lookup model's entrypoint function and pass relevant args to create a new model. **kwargs will be passed through entrypoint fn to ``timm.models.build_model_with_cfg()`` and then the model class __init__(). kwargs values set to None are pruned before passing. Args: model_name: Name of model to instantiate. pretrained: If set to `True`, load pretrained ImageNet-1k weights. pretrained_cfg: Pass in an external pretrained_cfg for model. pretrained_cfg_overlay: Replace key-values in base pretrained_cfg with these. checkpoint_path: Path of checkpoint to load _after_ the model is initialized. scriptable: Set layer config so that model is jit scriptable (not working for all models yet). exportable: Set layer config so that model is traceable / ONNX exportable (not fully impl/obeyed yet). no_jit: Set layer config so that model doesn't utilize jit scripted layers (so far activations only). Keyword Args: drop_rate (float): Classifier dropout rate for training. drop_path_rate (float): Stochastic depth drop rate for training. global_pool (str): Classifier global pooling type. Example: ```py >>> from timm import create_model >>> # Create a MobileNetV3-Large model with no pretrained weights. >>> model = create_model('mobilenetv3_large_100') >>> # Create a MobileNetV3-Large model with pretrained weights. >>> model = create_model('mobilenetv3_large_100', pretrained=True) >>> model.num_classes 1000 >>> # Create a MobileNetV3-Large model with pretrained weights and a new head with 10 classes. >>> model = create_model('mobilenetv3_large_100', pretrained=True, num_classes=10) >>> model.num_classes 10 ``` """ # Parameters that aren't supported by all models or are intended to only override model defaults if set # should default to None in command line args/cfg. Remove them if they are present and not set so that # non-supporting models don't break and default args remain in effect. kwargs = {k: v for k, v in kwargs.items() if v is not None} model_source, model_name = parse_model_name(model_name) if model_source == 'hf-hub': assert not pretrained_cfg, 'pretrained_cfg should not be set when sourcing model from Hugging Face Hub.' # For model names specified in the form `hf-hub:path/architecture_name@revision`, # load model weights + pretrained_cfg from Hugging Face hub. pretrained_cfg, model_name, model_args = load_model_config_from_hf(model_name) if model_args: for k, v in model_args.items(): kwargs.setdefault(k, v) else: model_name, pretrained_tag = split_model_name_tag(model_name) if pretrained_tag and not pretrained_cfg: # a valid pretrained_cfg argument takes priority over tag in model name pretrained_cfg = pretrained_tag if not is_model(model_name): raise RuntimeError('Unknown model (%s)' % model_name) create_fn = model_entrypoint(model_name) with set_layer_config(scriptable=scriptable, exportable=exportable, no_jit=no_jit): model = create_fn( pretrained=pretrained, pretrained_cfg=pretrained_cfg, pretrained_cfg_overlay=pretrained_cfg_overlay, **kwargs, ) if checkpoint_path: load_checkpoint(model, checkpoint_path) return model