import collections.abc import math import re from collections import defaultdict from itertools import chain from typing import Any, Callable, Dict, Iterator, Tuple, Type, Union import torch from torch import nn as nn from torch.utils.checkpoint import checkpoint __all__ = ['model_parameters', 'named_apply', 'named_modules', 'named_modules_with_params', 'adapt_input_conv', 'group_with_matcher', 'group_modules', 'group_parameters', 'flatten_modules', 'checkpoint_seq'] def model_parameters(model: nn.Module, exclude_head: bool = False): if exclude_head: # FIXME this a bit of a quick and dirty hack to skip classifier head params based on ordering return [p for p in model.parameters()][:-2] else: return model.parameters() def named_apply( fn: Callable, module: nn.Module, name='', depth_first: bool = True, include_root: bool = False, ) -> nn.Module: if not depth_first and include_root: fn(module=module, name=name) for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: fn(module=module, name=name) return module def named_modules( module: nn.Module, name: str = '', depth_first: bool = True, include_root: bool = False, ): if not depth_first and include_root: yield name, module for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name yield from named_modules( module=child_module, name=child_name, depth_first=depth_first, include_root=True) if depth_first and include_root: yield name, module def named_modules_with_params( module: nn.Module, name: str = '', depth_first: bool = True, include_root: bool = False, ): if module._parameters and not depth_first and include_root: yield name, module for child_name, child_module in module.named_children(): child_name = '.'.join((name, child_name)) if name else child_name yield from named_modules_with_params( module=child_module, name=child_name, depth_first=depth_first, include_root=True) if module._parameters and depth_first and include_root: yield name, module MATCH_PREV_GROUP = (99999,) def group_with_matcher( named_objects: Iterator[Tuple[str, Any]], group_matcher: Union[Dict, Callable], return_values: bool = False, reverse: bool = False ): if isinstance(group_matcher, dict): # dictionary matcher contains a dict of raw-string regex expr that must be compiled compiled = [] for group_ordinal, (group_name, mspec) in enumerate(group_matcher.items()): if mspec is None: continue # map all matching specifications into 3-tuple (compiled re, prefix, suffix) if isinstance(mspec, (tuple, list)): # multi-entry match specifications require each sub-spec to be a 2-tuple (re, suffix) for sspec in mspec: compiled += [(re.compile(sspec[0]), (group_ordinal,), sspec[1])] else: compiled += [(re.compile(mspec), (group_ordinal,), None)] group_matcher = compiled def _get_grouping(name): if isinstance(group_matcher, (list, tuple)): for match_fn, prefix, suffix in group_matcher: r = match_fn.match(name) if r: parts = (prefix, r.groups(), suffix) # map all tuple elem to int for numeric sort, filter out None entries return tuple(map(float, chain.from_iterable(filter(None, parts)))) return float('inf'), # un-matched layers (neck, head) mapped to largest ordinal else: ord = group_matcher(name) if not isinstance(ord, collections.abc.Iterable): return ord, return tuple(ord) # map layers into groups via ordinals (ints or tuples of ints) from matcher grouping = defaultdict(list) for k, v in named_objects: grouping[_get_grouping(k)].append(v if return_values else k) # remap to integers layer_id_to_param = defaultdict(list) lid = -1 for k in sorted(filter(lambda x: x is not None, grouping.keys())): if lid < 0 or k[-1] != MATCH_PREV_GROUP[0]: lid += 1 layer_id_to_param[lid].extend(grouping[k]) if reverse: assert not return_values, "reverse mapping only sensible for name output" # output reverse mapping param_to_layer_id = {} for lid, lm in layer_id_to_param.items(): for n in lm: param_to_layer_id[n] = lid return param_to_layer_id return layer_id_to_param def group_parameters( module: nn.Module, group_matcher, return_values: bool = False, reverse: bool = False, ): return group_with_matcher( module.named_parameters(), group_matcher, return_values=return_values, reverse=reverse) def group_modules( module: nn.Module, group_matcher, return_values: bool = False, reverse: bool = False, ): return group_with_matcher( named_modules_with_params(module), group_matcher, return_values=return_values, reverse=reverse) def flatten_modules( named_modules: Iterator[Tuple[str, nn.Module]], depth: int = 1, prefix: Union[str, Tuple[str, ...]] = '', module_types: Union[str, Tuple[Type[nn.Module]]] = 'sequential', ): prefix_is_tuple = isinstance(prefix, tuple) if isinstance(module_types, str): if module_types == 'container': module_types = (nn.Sequential, nn.ModuleList, nn.ModuleDict) else: module_types = (nn.Sequential,) for name, module in named_modules: if depth and isinstance(module, module_types): yield from flatten_modules( module.named_children(), depth - 1, prefix=(name,) if prefix_is_tuple else name, module_types=module_types, ) else: if prefix_is_tuple: name = prefix + (name,) yield name, module else: if prefix: name = '.'.join([prefix, name]) yield name, module def checkpoint_seq( functions, x, every=1, flatten=False, skip_last=False, preserve_rng_state=True ): r"""A helper function for checkpointing sequential models. Sequential models execute a list of modules/functions in order (sequentially). Therefore, we can divide such a sequence into segments and checkpoint each segment. All segments except run in :func:`torch.no_grad` manner, i.e., not storing the intermediate activations. The inputs of each checkpointed segment will be saved for re-running the segment in the backward pass. See :func:`~torch.utils.checkpoint.checkpoint` on how checkpointing works. .. warning:: Checkpointing currently only supports :func:`torch.autograd.backward` and only if its `inputs` argument is not passed. :func:`torch.autograd.grad` is not supported. .. warning: At least one of the inputs needs to have :code:`requires_grad=True` if grads are needed for model inputs, otherwise the checkpointed part of the model won't have gradients. Args: functions: A :class:`torch.nn.Sequential` or the list of modules or functions to run sequentially. x: A Tensor that is input to :attr:`functions` every: checkpoint every-n functions (default: 1) flatten (bool): flatten nn.Sequential of nn.Sequentials skip_last (bool): skip checkpointing the last function in the sequence if True preserve_rng_state (bool, optional, default=True): Omit stashing and restoring the RNG state during each checkpoint. Returns: Output of running :attr:`functions` sequentially on :attr:`*inputs` Example: >>> model = nn.Sequential(...) >>> input_var = checkpoint_seq(model, input_var, every=2) """ def run_function(start, end, functions): def forward(_x): for j in range(start, end + 1): _x = functions[j](_x) return _x return forward if isinstance(functions, torch.nn.Sequential): functions = functions.children() if flatten: functions = chain.from_iterable(functions) if not isinstance(functions, (tuple, list)): functions = tuple(functions) num_checkpointed = len(functions) if skip_last: num_checkpointed -= 1 end = -1 for start in range(0, num_checkpointed, every): end = min(start + every - 1, num_checkpointed - 1) x = checkpoint(run_function(start, end, functions), x, preserve_rng_state=preserve_rng_state) if skip_last: return run_function(end + 1, len(functions) - 1, functions)(x) return x def adapt_input_conv(in_chans, conv_weight): conv_type = conv_weight.dtype conv_weight = conv_weight.float() # Some weights are in torch.half, ensure it's float for sum on CPU O, I, J, K = conv_weight.shape if in_chans == 1: if I > 3: assert conv_weight.shape[1] % 3 == 0 # For models with space2depth stems conv_weight = conv_weight.reshape(O, I // 3, 3, J, K) conv_weight = conv_weight.sum(dim=2, keepdim=False) else: conv_weight = conv_weight.sum(dim=1, keepdim=True) elif in_chans != 3: if I != 3: raise NotImplementedError('Weight format not supported by conversion.') else: # NOTE this strategy should be better than random init, but there could be other combinations of # the original RGB input layer weights that'd work better for specific cases. repeat = int(math.ceil(in_chans / 3)) conv_weight = conv_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] conv_weight *= (3 / float(in_chans)) conv_weight = conv_weight.to(conv_type) return conv_weight