""" Bring-Your-Own-Attention Network A flexible network w/ dataclass based config for stacking NN blocks including self-attention (or similar) layers. Currently used to implement experimental variants of: * Bottleneck Transformers * Lambda ResNets * HaloNets Consider all of the models definitions here as experimental WIP and likely to change. Hacked together by / copyright Ross Wightman, 2021. """ from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs from .byobnet import ByoBlockCfg, ByoModelCfg, ByobNet, interleave_blocks __all__ = [] model_cfgs = dict( botnet26t=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', fixed_input_size=True, self_attn_layer='bottleneck', self_attn_kwargs=dict() ), sebotnet33ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333), ), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu', num_features=1280, attn_layer='se', self_attn_layer='bottleneck', self_attn_kwargs=dict() ), botnet50ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', fixed_input_size=True, self_attn_layer='bottleneck', self_attn_kwargs=dict() ), eca_botnext26ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', fixed_input_size=True, act_layer='silu', attn_layer='eca', self_attn_layer='bottleneck', self_attn_kwargs=dict(dim_head=16) ), halonet_h1=ByoModelCfg( blocks=( ByoBlockCfg(type='self_attn', d=3, c=64, s=1, gs=0, br=1.0), ByoBlockCfg(type='self_attn', d=3, c=128, s=2, gs=0, br=1.0), ByoBlockCfg(type='self_attn', d=10, c=256, s=2, gs=0, br=1.0), ByoBlockCfg(type='self_attn', d=3, c=512, s=2, gs=0, br=1.0), ), stem_chs=64, stem_type='7x7', stem_pool='maxpool', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3), ), halonet26t=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=2) ), sehalonet33ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=[2], d=3, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg('self_attn', d=2, c=1536, s=2, gs=0, br=0.333), ), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu', num_features=1280, attn_layer='se', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3) ), halonet50ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks( types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3, num_heads=4)), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=3) ), eca_halonext26ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=16, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=16, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=16, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=16, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', attn_layer='eca', self_attn_layer='halo', self_attn_kwargs=dict(block_size=8, halo_size=2, dim_head=16) ), lambda_resnet26t=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', self_attn_layer='lambda', self_attn_kwargs=dict(r=9) ), lambda_resnet50ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), every=4, d=4, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', act_layer='silu', self_attn_layer='lambda', self_attn_kwargs=dict(r=9) ), lambda_resnet26rpt_256=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=256, s=1, gs=0, br=0.25), ByoBlockCfg(type='bottle', d=2, c=512, s=2, gs=0, br=0.25), interleave_blocks(types=('bottle', 'self_attn'), d=2, c=1024, s=2, gs=0, br=0.25), ByoBlockCfg(type='self_attn', d=2, c=2048, s=2, gs=0, br=0.25), ), stem_chs=64, stem_type='tiered', stem_pool='maxpool', self_attn_layer='lambda', self_attn_kwargs=dict(r=None) ), # experimental haloregnetz_b=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=2, c=48, s=2, gs=16, br=3), ByoBlockCfg(type='bottle', d=6, c=96, s=2, gs=16, br=3), interleave_blocks(types=('bottle', 'self_attn'), every=3, d=12, c=192, s=2, gs=16, br=3), ByoBlockCfg('self_attn', d=2, c=288, s=2, gs=16, br=3), ), stem_chs=32, stem_pool='', downsample='', num_features=1536, act_layer='silu', attn_layer='se', attn_kwargs=dict(rd_ratio=0.25), block_kwargs=dict(bottle_in=True, linear_out=True), self_attn_layer='halo', self_attn_kwargs=dict(block_size=7, halo_size=2, qk_ratio=0.33) ), # experimental lamhalobotnet50ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks( types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, self_attn_layer='lambda', self_attn_kwargs=dict(r=13)), interleave_blocks( types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), interleave_blocks( types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, self_attn_layer='bottleneck', self_attn_kwargs=dict()), ), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu', ), halo2botnet50ts=ByoModelCfg( blocks=( ByoBlockCfg(type='bottle', d=3, c=256, s=1, gs=0, br=0.25), interleave_blocks( types=('bottle', 'self_attn'), d=4, c=512, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), interleave_blocks( types=('bottle', 'self_attn'), d=6, c=1024, s=2, gs=0, br=0.25, self_attn_layer='halo', self_attn_kwargs=dict(halo_size=3)), interleave_blocks( types=('bottle', 'self_attn'), d=3, c=2048, s=2, gs=0, br=0.25, self_attn_layer='bottleneck', self_attn_kwargs=dict()), ), stem_chs=64, stem_type='tiered', stem_pool='', act_layer='silu', ), ) def _create_byoanet(variant, cfg_variant=None, pretrained=False, **kwargs): return build_model_with_cfg( ByobNet, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], feature_cfg=dict(flatten_sequential=True), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', 'fixed_input_size': False, 'min_input_size': (3, 224, 224), **kwargs } default_cfgs = generate_default_cfgs({ # GPU-Efficient (ResNet) weights 'botnet26t_256.c1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/botnet26t_c1_256-167a0e9f.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'sebotnet33ts_256.a1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sebotnet33ts_a1h2_256-957e3c3e.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), 'botnet50ts_256.untrained': _cfg( fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'eca_botnext26ts_256.c1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_botnext26ts_c_256-95a898f6.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'halonet_h1.untrained': _cfg(input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), 'halonet26t.a1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet26t_a1h_256-3083328c.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256)), 'sehalonet33ts.ra2_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/sehalonet33ts_256-87e053f9.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), 'halonet50ts.a1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halonet50ts_a1h2_256-f3a3daee.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), 'eca_halonext26ts.c1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/eca_halonext26ts_c_256-06906299.pth', hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8), min_input_size=(3, 256, 256), crop_pct=0.94), 'lambda_resnet26t.c1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26t_c_256-e5a5c857.pth', hf_hub_id='timm/', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), 'lambda_resnet50ts.a1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet50ts_a1h_256-b87370f7.pth', hf_hub_id='timm/', min_input_size=(3, 128, 128), input_size=(3, 256, 256), pool_size=(8, 8)), 'lambda_resnet26rpt_256.c1_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lambda_resnet26rpt_c_256-ab00292d.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8), crop_pct=0.94), 'haloregnetz_b.ra3_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/haloregnetz_c_raa_256-c8ad7616.pth', hf_hub_id='timm/', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), first_conv='stem.conv', input_size=(3, 224, 224), pool_size=(7, 7), min_input_size=(3, 224, 224), crop_pct=0.94), 'lamhalobotnet50ts_256.a1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/lamhalobotnet50ts_a1h2_256-fe3d9445.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), 'halo2botnet50ts_256.a1h_in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-attn-weights/halo2botnet50ts_a1h2_256-fd9c11a3.pth', hf_hub_id='timm/', fixed_input_size=True, input_size=(3, 256, 256), pool_size=(8, 8)), }) @register_model def botnet26t_256(pretrained=False, **kwargs) -> ByobNet: """ Bottleneck Transformer w/ ResNet26-T backbone. """ kwargs.setdefault('img_size', 256) return _create_byoanet('botnet26t_256', 'botnet26t', pretrained=pretrained, **kwargs) @register_model def sebotnet33ts_256(pretrained=False, **kwargs) -> ByobNet: """ Bottleneck Transformer w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU, """ return _create_byoanet('sebotnet33ts_256', 'sebotnet33ts', pretrained=pretrained, **kwargs) @register_model def botnet50ts_256(pretrained=False, **kwargs) -> ByobNet: """ Bottleneck Transformer w/ ResNet50-T backbone, silu act. """ kwargs.setdefault('img_size', 256) return _create_byoanet('botnet50ts_256', 'botnet50ts', pretrained=pretrained, **kwargs) @register_model def eca_botnext26ts_256(pretrained=False, **kwargs) -> ByobNet: """ Bottleneck Transformer w/ ResNet26-T backbone, silu act. """ kwargs.setdefault('img_size', 256) return _create_byoanet('eca_botnext26ts_256', 'eca_botnext26ts', pretrained=pretrained, **kwargs) @register_model def halonet_h1(pretrained=False, **kwargs) -> ByobNet: """ HaloNet-H1. Halo attention in all stages as per the paper. NOTE: This runs very slowly! """ return _create_byoanet('halonet_h1', pretrained=pretrained, **kwargs) @register_model def halonet26t(pretrained=False, **kwargs) -> ByobNet: """ HaloNet w/ a ResNet26-t backbone. Halo attention in final two stages """ return _create_byoanet('halonet26t', pretrained=pretrained, **kwargs) @register_model def sehalonet33ts(pretrained=False, **kwargs) -> ByobNet: """ HaloNet w/ a ResNet33-t backbone, SE attn for non Halo blocks, SiLU, 1-2 Halo in stage 2,3,4. """ return _create_byoanet('sehalonet33ts', pretrained=pretrained, **kwargs) @register_model def halonet50ts(pretrained=False, **kwargs) -> ByobNet: """ HaloNet w/ a ResNet50-t backbone, silu act. Halo attention in final two stages """ return _create_byoanet('halonet50ts', pretrained=pretrained, **kwargs) @register_model def eca_halonext26ts(pretrained=False, **kwargs) -> ByobNet: """ HaloNet w/ a ResNet26-t backbone, silu act. Halo attention in final two stages """ return _create_byoanet('eca_halonext26ts', pretrained=pretrained, **kwargs) @register_model def lambda_resnet26t(pretrained=False, **kwargs) -> ByobNet: """ Lambda-ResNet-26-T. Lambda layers w/ conv pos in last two stages. """ return _create_byoanet('lambda_resnet26t', pretrained=pretrained, **kwargs) @register_model def lambda_resnet50ts(pretrained=False, **kwargs) -> ByobNet: """ Lambda-ResNet-50-TS. SiLU act. Lambda layers w/ conv pos in last two stages. """ return _create_byoanet('lambda_resnet50ts', pretrained=pretrained, **kwargs) @register_model def lambda_resnet26rpt_256(pretrained=False, **kwargs) -> ByobNet: """ Lambda-ResNet-26-R-T. Lambda layers w/ rel pos embed in last two stages. """ kwargs.setdefault('img_size', 256) return _create_byoanet('lambda_resnet26rpt_256', pretrained=pretrained, **kwargs) @register_model def haloregnetz_b(pretrained=False, **kwargs) -> ByobNet: """ Halo + RegNetZ """ return _create_byoanet('haloregnetz_b', pretrained=pretrained, **kwargs) @register_model def lamhalobotnet50ts_256(pretrained=False, **kwargs) -> ByobNet: """ Combo Attention (Lambda + Halo + Bot) Network """ return _create_byoanet('lamhalobotnet50ts_256', 'lamhalobotnet50ts', pretrained=pretrained, **kwargs) @register_model def halo2botnet50ts_256(pretrained=False, **kwargs) -> ByobNet: """ Combo Attention (Halo + Halo + Bot) Network """ return _create_byoanet('halo2botnet50ts_256', 'halo2botnet50ts', pretrained=pretrained, **kwargs)