""" PyTorch implementation of DualPathNetworks Based on original MXNet implementation https://github.com/cypw/DPNs with many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs. This implementation is compatible with the pretrained weights from cypw's MXNet implementation. Hacked together by / Copyright 2020 Ross Wightman """ from collections import OrderedDict from functools import partial from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DPN_MEAN, IMAGENET_DPN_STD, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import BatchNormAct2d, ConvNormAct, create_conv2d, create_classifier, get_norm_act_layer from ._builder import build_model_with_cfg from ._registry import register_model, generate_default_cfgs __all__ = ['DPN'] class CatBnAct(nn.Module): def __init__(self, in_chs, norm_layer=BatchNormAct2d): super(CatBnAct, self).__init__() self.bn = norm_layer(in_chs, eps=0.001) @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (Tuple[torch.Tensor, torch.Tensor]) -> (torch.Tensor) pass @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (torch.Tensor) -> (torch.Tensor) pass def forward(self, x): if isinstance(x, tuple): x = torch.cat(x, dim=1) return self.bn(x) class BnActConv2d(nn.Module): def __init__(self, in_chs, out_chs, kernel_size, stride, groups=1, norm_layer=BatchNormAct2d): super(BnActConv2d, self).__init__() self.bn = norm_layer(in_chs, eps=0.001) self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, groups=groups) def forward(self, x): return self.conv(self.bn(x)) class DualPathBlock(nn.Module): def __init__( self, in_chs, num_1x1_a, num_3x3_b, num_1x1_c, inc, groups, block_type='normal', b=False, ): super(DualPathBlock, self).__init__() self.num_1x1_c = num_1x1_c self.inc = inc self.b = b if block_type == 'proj': self.key_stride = 1 self.has_proj = True elif block_type == 'down': self.key_stride = 2 self.has_proj = True else: assert block_type == 'normal' self.key_stride = 1 self.has_proj = False self.c1x1_w_s1 = None self.c1x1_w_s2 = None if self.has_proj: # Using different member names here to allow easier parameter key matching for conversion if self.key_stride == 2: self.c1x1_w_s2 = BnActConv2d( in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2) else: self.c1x1_w_s1 = BnActConv2d( in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1) self.c1x1_a = BnActConv2d(in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1) self.c3x3_b = BnActConv2d( in_chs=num_1x1_a, out_chs=num_3x3_b, kernel_size=3, stride=self.key_stride, groups=groups) if b: self.c1x1_c = CatBnAct(in_chs=num_3x3_b) self.c1x1_c1 = create_conv2d(num_3x3_b, num_1x1_c, kernel_size=1) self.c1x1_c2 = create_conv2d(num_3x3_b, inc, kernel_size=1) else: self.c1x1_c = BnActConv2d(in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1) self.c1x1_c1 = None self.c1x1_c2 = None @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor] pass @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor] pass def forward(self, x) -> Tuple[torch.Tensor, torch.Tensor]: if isinstance(x, tuple): x_in = torch.cat(x, dim=1) else: x_in = x if self.c1x1_w_s1 is None and self.c1x1_w_s2 is None: # self.has_proj == False, torchscript requires condition on module == None x_s1 = x[0] x_s2 = x[1] else: # self.has_proj == True if self.c1x1_w_s1 is not None: # self.key_stride = 1 x_s = self.c1x1_w_s1(x_in) else: # self.key_stride = 2 x_s = self.c1x1_w_s2(x_in) x_s1 = x_s[:, :self.num_1x1_c, :, :] x_s2 = x_s[:, self.num_1x1_c:, :, :] x_in = self.c1x1_a(x_in) x_in = self.c3x3_b(x_in) x_in = self.c1x1_c(x_in) if self.c1x1_c1 is not None: # self.b == True, using None check for torchscript compat out1 = self.c1x1_c1(x_in) out2 = self.c1x1_c2(x_in) else: out1 = x_in[:, :self.num_1x1_c, :, :] out2 = x_in[:, self.num_1x1_c:, :, :] resid = x_s1 + out1 dense = torch.cat([x_s2, out2], dim=1) return resid, dense class DPN(nn.Module): def __init__( self, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128), k_r=96, groups=32, num_classes=1000, in_chans=3, output_stride=32, global_pool='avg', small=False, num_init_features=64, b=False, drop_rate=0., norm_layer='batchnorm2d', act_layer='relu', fc_act_layer='elu', ): super(DPN, self).__init__() self.num_classes = num_classes self.drop_rate = drop_rate self.b = b assert output_stride == 32 # FIXME look into dilation support norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=act_layer), eps=.001) fc_norm_layer = partial(get_norm_act_layer(norm_layer, act_layer=fc_act_layer), eps=.001, inplace=False) bw_factor = 1 if small else 4 blocks = OrderedDict() # conv1 blocks['conv1_1'] = ConvNormAct( in_chans, num_init_features, kernel_size=3 if small else 7, stride=2, norm_layer=norm_layer) blocks['conv1_pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.feature_info = [dict(num_chs=num_init_features, reduction=2, module='features.conv1_1')] # conv2 bw = 64 * bw_factor inc = inc_sec[0] r = (k_r * bw) // (64 * bw_factor) blocks['conv2_1'] = DualPathBlock(num_init_features, r, r, bw, inc, groups, 'proj', b) in_chs = bw + 3 * inc for i in range(2, k_sec[0] + 1): blocks['conv2_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) in_chs += inc self.feature_info += [dict(num_chs=in_chs, reduction=4, module=f'features.conv2_{k_sec[0]}')] # conv3 bw = 128 * bw_factor inc = inc_sec[1] r = (k_r * bw) // (64 * bw_factor) blocks['conv3_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) in_chs = bw + 3 * inc for i in range(2, k_sec[1] + 1): blocks['conv3_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) in_chs += inc self.feature_info += [dict(num_chs=in_chs, reduction=8, module=f'features.conv3_{k_sec[1]}')] # conv4 bw = 256 * bw_factor inc = inc_sec[2] r = (k_r * bw) // (64 * bw_factor) blocks['conv4_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) in_chs = bw + 3 * inc for i in range(2, k_sec[2] + 1): blocks['conv4_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) in_chs += inc self.feature_info += [dict(num_chs=in_chs, reduction=16, module=f'features.conv4_{k_sec[2]}')] # conv5 bw = 512 * bw_factor inc = inc_sec[3] r = (k_r * bw) // (64 * bw_factor) blocks['conv5_1'] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'down', b) in_chs = bw + 3 * inc for i in range(2, k_sec[3] + 1): blocks['conv5_' + str(i)] = DualPathBlock(in_chs, r, r, bw, inc, groups, 'normal', b) in_chs += inc self.feature_info += [dict(num_chs=in_chs, reduction=32, module=f'features.conv5_{k_sec[3]}')] blocks['conv5_bn_ac'] = CatBnAct(in_chs, norm_layer=fc_norm_layer) self.num_features = in_chs self.features = nn.Sequential(blocks) # Using 1x1 conv for the FC layer to allow the extra pooling scheme self.global_pool, self.classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^features\.conv1', blocks=[ (r'^features\.conv(\d+)' if coarse else r'^features\.conv(\d+)_(\d+)', None), (r'^features\.conv5_bn_ac', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool, self.classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool, use_conv=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() def forward_features(self, x): return self.features(x) def forward_head(self, x, pre_logits: bool = False): x = self.global_pool(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) if pre_logits: return self.flatten(x) x = self.classifier(x) return self.flatten(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _create_dpn(variant, pretrained=False, **kwargs): return build_model_with_cfg( DPN, variant, pretrained, feature_cfg=dict(feature_concat=True, flatten_sequential=True), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DPN_MEAN, 'std': IMAGENET_DPN_STD, 'first_conv': 'features.conv1_1.conv', 'classifier': 'classifier', **kwargs } default_cfgs = generate_default_cfgs({ 'dpn48b.untrained': _cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'dpn68.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn68b.ra_in1k': _cfg( hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'dpn68b.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn92.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn98.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn131.mx_in1k': _cfg(hf_hub_id='timm/'), 'dpn107.mx_in1k': _cfg(hf_hub_id='timm/') }) @register_model def dpn48b(pretrained=False, **kwargs) -> DPN: model_args = dict( small=True, num_init_features=10, k_r=128, groups=32, b=True, k_sec=(3, 4, 6, 3), inc_sec=(16, 32, 32, 64), act_layer='silu') return _create_dpn('dpn48b', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def dpn68(pretrained=False, **kwargs) -> DPN: model_args = dict( small=True, num_init_features=10, k_r=128, groups=32, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64)) return _create_dpn('dpn68', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def dpn68b(pretrained=False, **kwargs) -> DPN: model_args = dict( small=True, num_init_features=10, k_r=128, groups=32, b=True, k_sec=(3, 4, 12, 3), inc_sec=(16, 32, 32, 64)) return _create_dpn('dpn68b', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def dpn92(pretrained=False, **kwargs) -> DPN: model_args = dict( num_init_features=64, k_r=96, groups=32, k_sec=(3, 4, 20, 3), inc_sec=(16, 32, 24, 128)) return _create_dpn('dpn92', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def dpn98(pretrained=False, **kwargs) -> DPN: model_args = dict( num_init_features=96, k_r=160, groups=40, k_sec=(3, 6, 20, 3), inc_sec=(16, 32, 32, 128)) return _create_dpn('dpn98', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def dpn131(pretrained=False, **kwargs) -> DPN: model_args = dict( num_init_features=128, k_r=160, groups=40, k_sec=(4, 8, 28, 3), inc_sec=(16, 32, 32, 128)) return _create_dpn('dpn131', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def dpn107(pretrained=False, **kwargs) -> DPN: model_args = dict( num_init_features=128, k_r=200, groups=50, k_sec=(4, 8, 20, 3), inc_sec=(20, 64, 64, 128)) return _create_dpn('dpn107', pretrained=pretrained, **dict(model_args, **kwargs))