""" EdgeNeXt Paper: `EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications` - https://arxiv.org/abs/2206.10589 Original code and weights from https://github.com/mmaaz60/EdgeNeXt Modifications and additions for timm by / Copyright 2022, Ross Wightman """ import math from collections import OrderedDict from functools import partial from typing import Tuple import torch import torch.nn.functional as F from torch import nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import trunc_normal_tf_, DropPath, LayerNorm2d, Mlp, SelectAdaptivePool2d, create_conv2d, \ use_fused_attn, NormMlpClassifierHead, ClassifierHead from ._builder import build_model_with_cfg from ._features_fx import register_notrace_module from ._manipulate import named_apply, checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['EdgeNeXt'] # model_registry will add each entrypoint fn to this @register_notrace_module # reason: FX can't symbolically trace torch.arange in forward method class PositionalEncodingFourier(nn.Module): def __init__(self, hidden_dim=32, dim=768, temperature=10000): super().__init__() self.token_projection = nn.Conv2d(hidden_dim * 2, dim, kernel_size=1) self.scale = 2 * math.pi self.temperature = temperature self.hidden_dim = hidden_dim self.dim = dim def forward(self, shape: Tuple[int, int, int]): device = self.token_projection.weight.device dtype = self.token_projection.weight.dtype inv_mask = ~torch.zeros(shape).to(device=device, dtype=torch.bool) y_embed = inv_mask.cumsum(1, dtype=torch.float32) x_embed = inv_mask.cumsum(2, dtype=torch.float32) eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.hidden_dim, dtype=torch.int64, device=device).to(torch.float32) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='floor') / self.hidden_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) pos = self.token_projection(pos.to(dtype)) return pos class ConvBlock(nn.Module): def __init__( self, dim, dim_out=None, kernel_size=7, stride=1, conv_bias=True, expand_ratio=4, ls_init_value=1e-6, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop_path=0., ): super().__init__() dim_out = dim_out or dim self.shortcut_after_dw = stride > 1 or dim != dim_out self.conv_dw = create_conv2d( dim, dim_out, kernel_size=kernel_size, stride=stride, depthwise=True, bias=conv_bias) self.norm = norm_layer(dim_out) self.mlp = Mlp(dim_out, int(expand_ratio * dim_out), act_layer=act_layer) self.gamma = nn.Parameter(ls_init_value * torch.ones(dim_out)) if ls_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x x = self.conv_dw(x) if self.shortcut_after_dw: shortcut = x x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.mlp(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = shortcut + self.drop_path(x) return x class CrossCovarianceAttn(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0. ): super().__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 4, 1) q, k, v = qkv.unbind(0) # NOTE, this is NOT spatial attn, q, k, v are B, num_heads, C, L --> C x C attn map attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v) x = x.permute(0, 3, 1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x @torch.jit.ignore def no_weight_decay(self): return {'temperature'} class SplitTransposeBlock(nn.Module): def __init__( self, dim, num_scales=1, num_heads=8, expand_ratio=4, use_pos_emb=True, conv_bias=True, qkv_bias=True, ls_init_value=1e-6, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop_path=0., attn_drop=0., proj_drop=0. ): super().__init__() width = max(int(math.ceil(dim / num_scales)), int(math.floor(dim // num_scales))) self.width = width self.num_scales = max(1, num_scales - 1) convs = [] for i in range(self.num_scales): convs.append(create_conv2d(width, width, kernel_size=3, depthwise=True, bias=conv_bias)) self.convs = nn.ModuleList(convs) self.pos_embd = None if use_pos_emb: self.pos_embd = PositionalEncodingFourier(dim=dim) self.norm_xca = norm_layer(dim) self.gamma_xca = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None self.xca = CrossCovarianceAttn( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop) self.norm = norm_layer(dim, eps=1e-6) self.mlp = Mlp(dim, int(expand_ratio * dim), act_layer=act_layer) self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = x # scales code re-written for torchscript as per my res2net fixes -rw # NOTE torch.split(x, self.width, 1) causing issues with ONNX export spx = x.chunk(len(self.convs) + 1, dim=1) spo = [] sp = spx[0] for i, conv in enumerate(self.convs): if i > 0: sp = sp + spx[i] sp = conv(sp) spo.append(sp) spo.append(spx[-1]) x = torch.cat(spo, 1) # XCA B, C, H, W = x.shape x = x.reshape(B, C, H * W).permute(0, 2, 1) if self.pos_embd is not None: pos_encoding = self.pos_embd((B, H, W)).reshape(B, -1, x.shape[1]).permute(0, 2, 1) x = x + pos_encoding x = x + self.drop_path(self.gamma_xca * self.xca(self.norm_xca(x))) x = x.reshape(B, H, W, C) # Inverted Bottleneck x = self.norm(x) x = self.mlp(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = shortcut + self.drop_path(x) return x class EdgeNeXtStage(nn.Module): def __init__( self, in_chs, out_chs, stride=2, depth=2, num_global_blocks=1, num_heads=4, scales=2, kernel_size=7, expand_ratio=4, use_pos_emb=False, downsample_block=False, conv_bias=True, ls_init_value=1.0, drop_path_rates=None, norm_layer=LayerNorm2d, norm_layer_cl=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU ): super().__init__() self.grad_checkpointing = False if downsample_block or stride == 1: self.downsample = nn.Identity() else: self.downsample = nn.Sequential( norm_layer(in_chs), nn.Conv2d(in_chs, out_chs, kernel_size=2, stride=2, bias=conv_bias) ) in_chs = out_chs stage_blocks = [] for i in range(depth): if i < depth - num_global_blocks: stage_blocks.append( ConvBlock( dim=in_chs, dim_out=out_chs, stride=stride if downsample_block and i == 0 else 1, conv_bias=conv_bias, kernel_size=kernel_size, expand_ratio=expand_ratio, ls_init_value=ls_init_value, drop_path=drop_path_rates[i], norm_layer=norm_layer_cl, act_layer=act_layer, ) ) else: stage_blocks.append( SplitTransposeBlock( dim=in_chs, num_scales=scales, num_heads=num_heads, expand_ratio=expand_ratio, use_pos_emb=use_pos_emb, conv_bias=conv_bias, ls_init_value=ls_init_value, drop_path=drop_path_rates[i], norm_layer=norm_layer_cl, act_layer=act_layer, ) ) in_chs = out_chs self.blocks = nn.Sequential(*stage_blocks) def forward(self, x): x = self.downsample(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class EdgeNeXt(nn.Module): def __init__( self, in_chans=3, num_classes=1000, global_pool='avg', dims=(24, 48, 88, 168), depths=(3, 3, 9, 3), global_block_counts=(0, 1, 1, 1), kernel_sizes=(3, 5, 7, 9), heads=(8, 8, 8, 8), d2_scales=(2, 2, 3, 4), use_pos_emb=(False, True, False, False), ls_init_value=1e-6, head_init_scale=1., expand_ratio=4, downsample_block=False, conv_bias=True, stem_type='patch', head_norm_first=False, act_layer=nn.GELU, drop_path_rate=0., drop_rate=0., ): super().__init__() self.num_classes = num_classes self.global_pool = global_pool self.drop_rate = drop_rate norm_layer = partial(LayerNorm2d, eps=1e-6) norm_layer_cl = partial(nn.LayerNorm, eps=1e-6) self.feature_info = [] assert stem_type in ('patch', 'overlap') if stem_type == 'patch': self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4, bias=conv_bias), norm_layer(dims[0]), ) else: self.stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=9, stride=4, padding=9 // 2, bias=conv_bias), norm_layer(dims[0]), ) curr_stride = 4 stages = [] dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] in_chs = dims[0] for i in range(4): stride = 2 if curr_stride == 2 or i > 0 else 1 # FIXME support dilation / output_stride curr_stride *= stride stages.append(EdgeNeXtStage( in_chs=in_chs, out_chs=dims[i], stride=stride, depth=depths[i], num_global_blocks=global_block_counts[i], num_heads=heads[i], drop_path_rates=dp_rates[i], scales=d2_scales[i], expand_ratio=expand_ratio, kernel_size=kernel_sizes[i], use_pos_emb=use_pos_emb[i], ls_init_value=ls_init_value, downsample_block=downsample_block, conv_bias=conv_bias, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl, act_layer=act_layer, )) # NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 in_chs = dims[i] self.feature_info += [dict(num_chs=in_chs, reduction=curr_stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) self.num_features = dims[-1] if head_norm_first: self.norm_pre = norm_layer(self.num_features) self.head = ClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, ) else: self.norm_pre = nn.Identity() self.head = NormMlpClassifierHead( self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, norm_layer=norm_layer, ) named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+)\.downsample', (0,)), # blocks (r'^stages\.(\d+)\.blocks\.(\d+)', None), (r'^norm_pre', (99999,)) ] ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes=0, global_pool=None): self.head.reset(num_classes, global_pool) def forward_features(self, x): x = self.stem(x) x = self.stages(x) x = self.norm_pre(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=True) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module, name=None, head_init_scale=1.0): if isinstance(module, nn.Conv2d): trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Linear): trunc_normal_tf_(module.weight, std=.02) nn.init.zeros_(module.bias) if name and 'head.' in name: module.weight.data.mul_(head_init_scale) module.bias.data.mul_(head_init_scale) def checkpoint_filter_fn(state_dict, model): """ Remap FB checkpoints -> timm """ if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: return state_dict # non-FB checkpoint # models were released as train checkpoints... :/ if 'model_ema' in state_dict: state_dict = state_dict['model_ema'] elif 'model' in state_dict: state_dict = state_dict['model'] elif 'state_dict' in state_dict: state_dict = state_dict['state_dict'] out_dict = {} import re for k, v in state_dict.items(): k = k.replace('downsample_layers.0.', 'stem.') k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) k = k.replace('dwconv', 'conv_dw') k = k.replace('pwconv', 'mlp.fc') k = k.replace('head.', 'head.fc.') if k.startswith('norm.'): k = k.replace('norm', 'head.norm') if v.ndim == 2 and 'head' not in k: model_shape = model.state_dict()[k].shape v = v.reshape(model_shape) out_dict[k] = v return out_dict def _create_edgenext(variant, pretrained=False, **kwargs): model = build_model_with_cfg( EdgeNeXt, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.0', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ 'edgenext_xx_small.in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'edgenext_x_small.in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'edgenext_small.usi_in1k': _cfg( # USI weights hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, ), 'edgenext_base.usi_in1k': _cfg( # USI weights hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, ), 'edgenext_base.in21k_ft_in1k': _cfg( # USI weights hf_hub_id='timm/', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0, ), 'edgenext_small_rw.sw_in1k': _cfg( hf_hub_id='timm/', test_input_size=(3, 320, 320), test_crop_pct=1.0, ), }) @register_model def edgenext_xx_small(pretrained=False, **kwargs) -> EdgeNeXt: # 1.33M & 260.58M @ 256 resolution # 71.23% Top-1 accuracy # No AA, Color Jitter=0.4, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=51.66 versus 47.67 for MobileViT_XXS # For A100: FPS @ BS=1: 212.13 & @ BS=256: 7042.06 versus FPS @ BS=1: 96.68 & @ BS=256: 4624.71 for MobileViT_XXS model_args = dict(depths=(2, 2, 6, 2), dims=(24, 48, 88, 168), heads=(4, 4, 4, 4)) return _create_edgenext('edgenext_xx_small', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_x_small(pretrained=False, **kwargs) -> EdgeNeXt: # 2.34M & 538.0M @ 256 resolution # 75.00% Top-1 accuracy # No AA, No Mixup & Cutmix, DropPath=0.0, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=31.61 versus 28.49 for MobileViT_XS # For A100: FPS @ BS=1: 179.55 & @ BS=256: 4404.95 versus FPS @ BS=1: 94.55 & @ BS=256: 2361.53 for MobileViT_XS model_args = dict(depths=(3, 3, 9, 3), dims=(32, 64, 100, 192), heads=(4, 4, 4, 4)) return _create_edgenext('edgenext_x_small', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_small(pretrained=False, **kwargs) -> EdgeNeXt: # 5.59M & 1260.59M @ 256 resolution # 79.43% Top-1 accuracy # AA=True, No Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=20.47 versus 18.86 for MobileViT_S # For A100: FPS @ BS=1: 172.33 & @ BS=256: 3010.25 versus FPS @ BS=1: 93.84 & @ BS=256: 1785.92 for MobileViT_S model_args = dict(depths=(3, 3, 9, 3), dims=(48, 96, 160, 304)) return _create_edgenext('edgenext_small', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_base(pretrained=False, **kwargs) -> EdgeNeXt: # 18.51M & 3840.93M @ 256 resolution # 82.5% (normal) 83.7% (USI) Top-1 accuracy # AA=True, Mixup & Cutmix, DropPath=0.1, BS=4096, lr=0.006, multi-scale-sampler # Jetson FPS=xx.xx versus xx.xx for MobileViT_S # For A100: FPS @ BS=1: xxx.xx & @ BS=256: xxxx.xx model_args = dict(depths=[3, 3, 9, 3], dims=[80, 160, 288, 584]) return _create_edgenext('edgenext_base', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def edgenext_small_rw(pretrained=False, **kwargs) -> EdgeNeXt: model_args = dict( depths=(3, 3, 9, 3), dims=(48, 96, 192, 384), downsample_block=True, conv_bias=False, stem_type='overlap') return _create_edgenext('edgenext_small_rw', pretrained=pretrained, **dict(model_args, **kwargs))