""" MultiStep LR Scheduler Basic multi step LR schedule with warmup, noise. """ import torch import bisect from timm.scheduler.scheduler import Scheduler from typing import List class MultiStepLRScheduler(Scheduler): """ """ def __init__( self, optimizer: torch.optim.Optimizer, decay_t: List[int], decay_rate: float = 1., warmup_t=0, warmup_lr_init=0, warmup_prefix=True, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, initialize=True, ) -> None: super().__init__( optimizer, param_group_field="lr", t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize, ) self.decay_t = decay_t self.decay_rate = decay_rate self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.warmup_prefix = warmup_prefix if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def get_curr_decay_steps(self, t): # find where in the array t goes, # assumes self.decay_t is sorted return bisect.bisect_right(self.decay_t, t + 1) def _get_lr(self, t: int) -> List[float]: if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: if self.warmup_prefix: t = t - self.warmup_t lrs = [v * (self.decay_rate ** self.get_curr_decay_steps(t)) for v in self.base_values] return lrs