import abc from abc import ABC from typing import Any, Dict, List, Optional import torch class Scheduler(ABC): """ Parameter Scheduler Base Class A scheduler base class that can be used to schedule any optimizer parameter groups. Unlike the builtin PyTorch schedulers, this is intended to be consistently called * At the END of each epoch, before incrementing the epoch count, to calculate next epoch's value * At the END of each optimizer update, after incrementing the update count, to calculate next update's value The schedulers built on this should try to remain as stateless as possible (for simplicity). This family of schedulers is attempting to avoid the confusion of the meaning of 'last_epoch' and -1 values for special behaviour. All epoch and update counts must be tracked in the training code and explicitly passed in to the schedulers on the corresponding step or step_update call. Based on ideas from: * https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler * https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers """ def __init__( self, optimizer: torch.optim.Optimizer, param_group_field: str, t_in_epochs: bool = True, noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize: bool = True, ) -> None: self.optimizer = optimizer self.param_group_field = param_group_field self._initial_param_group_field = f"initial_{param_group_field}" if initialize: for i, group in enumerate(self.optimizer.param_groups): if param_group_field not in group: raise KeyError(f"{param_group_field} missing from param_groups[{i}]") group.setdefault(self._initial_param_group_field, group[param_group_field]) else: for i, group in enumerate(self.optimizer.param_groups): if self._initial_param_group_field not in group: raise KeyError(f"{self._initial_param_group_field} missing from param_groups[{i}]") self.base_values = [group[self._initial_param_group_field] for group in self.optimizer.param_groups] self.metric = None # any point to having this for all? self.t_in_epochs = t_in_epochs self.noise_range_t = noise_range_t self.noise_pct = noise_pct self.noise_type = noise_type self.noise_std = noise_std self.noise_seed = noise_seed if noise_seed is not None else 42 self.update_groups(self.base_values) def state_dict(self) -> Dict[str, Any]: return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict: Dict[str, Any]) -> None: self.__dict__.update(state_dict) @abc.abstractmethod def _get_lr(self, t: int) -> List[float]: pass def _get_values(self, t: int, on_epoch: bool = True) -> Optional[List[float]]: proceed = (on_epoch and self.t_in_epochs) or (not on_epoch and not self.t_in_epochs) if not proceed: return None return self._get_lr(t) def step(self, epoch: int, metric: float = None) -> None: self.metric = metric values = self._get_values(epoch, on_epoch=True) if values is not None: values = self._add_noise(values, epoch) self.update_groups(values) def step_update(self, num_updates: int, metric: float = None): self.metric = metric values = self._get_values(num_updates, on_epoch=False) if values is not None: values = self._add_noise(values, num_updates) self.update_groups(values) def update_groups(self, values): if not isinstance(values, (list, tuple)): values = [values] * len(self.optimizer.param_groups) for param_group, value in zip(self.optimizer.param_groups, values): if 'lr_scale' in param_group: param_group[self.param_group_field] = value * param_group['lr_scale'] else: param_group[self.param_group_field] = value def _add_noise(self, lrs, t): if self._is_apply_noise(t): noise = self._calculate_noise(t) lrs = [v + v * noise for v in lrs] return lrs def _is_apply_noise(self, t) -> bool: """Return True if scheduler in noise range.""" apply_noise = False if self.noise_range_t is not None: if isinstance(self.noise_range_t, (list, tuple)): apply_noise = self.noise_range_t[0] <= t < self.noise_range_t[1] else: apply_noise = t >= self.noise_range_t return apply_noise def _calculate_noise(self, t) -> float: g = torch.Generator() g.manual_seed(self.noise_seed + t) if self.noise_type == 'normal': while True: # resample if noise out of percent limit, brute force but shouldn't spin much noise = torch.randn(1, generator=g).item() if abs(noise) < self.noise_pct: return noise else: noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct return noise