""" CUDA / AMP utils Hacked together by / Copyright 2020 Ross Wightman """ import torch try: from apex import amp has_apex = True except ImportError: amp = None has_apex = False from .clip_grad import dispatch_clip_grad class ApexScaler: state_dict_key = "amp" def __call__( self, loss, optimizer, clip_grad=None, clip_mode='norm', parameters=None, create_graph=False, need_update=True, ): with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward(create_graph=create_graph) if need_update: if clip_grad is not None: dispatch_clip_grad(amp.master_params(optimizer), clip_grad, mode=clip_mode) optimizer.step() def state_dict(self): if 'state_dict' in amp.__dict__: return amp.state_dict() def load_state_dict(self, state_dict): if 'load_state_dict' in amp.__dict__: amp.load_state_dict(state_dict) class NativeScaler: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__( self, loss, optimizer, clip_grad=None, clip_mode='norm', parameters=None, create_graph=False, need_update=True, ): self._scaler.scale(loss).backward(create_graph=create_graph) if need_update: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place dispatch_clip_grad(parameters, clip_grad, mode=clip_mode) self._scaler.step(optimizer) self._scaler.update() def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict)