Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 278.91 +/- 14.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd8fed8ff40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd8fed94040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd8fed940d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd8fed94160>", "_build": "<function ActorCriticPolicy._build at 0x7dd8fed941f0>", "forward": "<function ActorCriticPolicy.forward at 0x7dd8fed94280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd8fed94310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd8fed943a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd8fed94430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd8fed944c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd8fed94550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd8fed945e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd8fef29480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711300421607133239, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOBDj59zIc+hSsYvg9AmL6N0y86/uStPAAAAAAAAAAApp1FPgHaUT+mNS4+oTLhvkoAKj4EMK28AAAAAAAAAACA4xi9tAWevOrkz7u6+aA8uZ8QPtC6fb0AAIA/AACAP03hZD3DaSg/NirxPAFXtL5ZeUY903U8vQAAAAAAAAAAGoqKvfOQlD9qfcS9AFPOvsXNH766YQM8AAAAAAAAAAAAICi7rlGYusYcZbPWOfQuLWXdumTYwTMAAIA/AACAP03aID2kMAu75auDvIbEnDxtPQC8O+6GPQAAgD8AAIA/msFePOE0mLpus2WzRIwKLjHEqjqcLqIzAACAPwAAgD9zJpm9/glpPxenS7uzo9m+1fF9vfpYET0AAAAAAAAAAGCVdz4PGl8/QLD/PcIb4r5+oyE+quWpvQAAAAAAAAAAsyzoPfgvmj6b4qe9BH2WvgyIUD3NVEI9AAAAAAAAAAANfJY9HCoTvPY2970+JTA8a56avN20HL4AAIA/AACAPzMfqzuZBAQ/VsljPZoUpb4y/x87HjpvPAAAAAAAAAAAAMygO1yfSLo+i6q3fJ15svgOE7vei8g2AACAPwAAgD/mqgG+Gq2kP75anr7Xg7C+/uOZvp7bL70AAAAAAAAAALqvDT6Om5E+PePIvbOYm75N6OA946bmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG60Gsmv4dqMAWyUTQEBjAF0lEdAlx+pSR8tw3V9lChoBkdAcu9YUnG83GgHTRQBaAhHQJchB3MY/FB1fZQoaAZHQHKF6HsTnJVoB018AWgIR0CXIUZeAuqWdX2UKGgGR0BxV4QL/jsEaAdNFQFoCEdAlyH9bkfcOHV9lChoBkdAcxlwyqMm4WgHS/FoCEdAlyI2iQDFInV9lChoBkdAcCzgAZKnN2gHS+JoCEdAlyPJzcRDkXV9lChoBkdAcOMvWYnfEWgHS+poCEdAlyPWVVxS53V9lChoBkdAcNCFOwgTy2gHS+BoCEdAlyPdRiw0O3V9lChoBkdAcBFRXOnl4mgHS/VoCEdAlyPsw1zhgnV9lChoBkdAcrMbdadMCmgHS+xoCEdAlyR6brkbP3V9lChoBkdAbZPMGorFwWgHS99oCEdAlyT2uTzNEHV9lChoBkdAcVV+u/1xsGgHTREBaAhHQJclSdWhh6V1fZQoaAZHQHD3+0b961NoB00JAWgIR0CXJcu01IiDdX2UKGgGR0ByC6+evpyIaAdNBwFoCEdAlyY+1a4c3nV9lChoBkdAbiV9/BnBcmgHTQgBaAhHQJcmXwBo24x1fZQoaAZHQHAkH/giu+1oB00JAWgIR0CXJ4ymALApdX2UKGgGR0BwHMSrYGt7aAdL3GgIR0CXJ4wIMSbpdX2UKGgGR0Bx7Lg88s+WaAdNOgFoCEdAlyjjwYtQK3V9lChoBkdAcjfKb8WKuWgHS/1oCEdAlyk3wb2lEnV9lChoBkdAcTOXbdrO7mgHS95oCEdAlymO40/GEXV9lChoBkdAcadAgPmPo2gHS95oCEdAlyqEqH4463V9lChoBkdAcQrbcXWOImgHTQwBaAhHQJcrFSXMQmN1fZQoaAZHQHJ1UvPC2txoB0vTaAhHQJcr1X4j8k51fZQoaAZHQHGrxc7hegNoB00jAWgIR0CXK98Nx2jgdX2UKGgGR0BwZ/7aZhKEaAdNJQFoCEdAlywGK2rn1XV9lChoBkdAbyEntOVPe2gHS/RoCEdAlyw25QP7N3V9lChoBkdAcstOrQw9JWgHTRABaAhHQJcsolTm4iJ1fZQoaAZHQHFCoiX6ZYxoB0viaAhHQJcs+03Ov+x1fZQoaAZHQHCPy1eBxxVoB00YAWgIR0CXLlIrvsqsdX2UKGgGR0BySTxsl9jPaAdL8mgIR0CXLsUBGQS0dX2UKGgGR0BxbG8oQWepaAdL9WgIR0CXLtyIYWLxdX2UKGgGR0BxsHfYSQHSaAdL52gIR0CXL8eUY8+zdX2UKGgGR0ByeFEc81XOaAdN6AFoCEdAlzAFvAGjbnV9lChoBkdAbm1WtEG7jGgHS/BoCEdAlzBPttygf3V9lChoBkdAb1mHX2/SIGgHS/JoCEdAlzCnRTjvNXV9lChoBkdAciKNke6qbWgHS/loCEdAlzGqw+t8u3V9lChoBkdAbp/62OQyRGgHS+VoCEdAlzI6NEPUa3V9lChoBkdAdCyugpSaVmgHTQABaAhHQJcyVScbzbx1fZQoaAZHQHFcbHdXT3JoB00EAWgIR0CXQ/o2XLNfdX2UKGgGR0BxLOCTUy57aAdL62gIR0CXRAMZxaPkdX2UKGgGR0BxLRGe+VTraAdNEAFoCEdAl0SX2M85j3V9lChoBkdAchC/iYLLIWgHTQ0BaAhHQJdFO7QLNOd1fZQoaAZHQHJlgfU4JeFoB001AWgIR0CXRW7x/d6+dX2UKGgGR0BykLTVlPJraAdL4mgIR0CXRdZVGTcJdX2UKGgGR0ByygUUO/cnaAdNBAFoCEdAl0ZBqCYkV3V9lChoBkdAcMO4R28qWmgHTRYBaAhHQJdHEJfICEJ1fZQoaAZHQHBsj7IkqtpoB0vXaAhHQJdHPOyE+Pl1fZQoaAZHQHIC9waR6nloB00BAWgIR0CXR6w482aVdX2UKGgGR0BxBlxEORT1aAdNCgFoCEdAl0gxoIv8InV9lChoBkdAcZRFmnO0LWgHTTEBaAhHQJdIs41gpjN1fZQoaAZHQHG5wFLWZqpoB0v1aAhHQJdJppxm03R1fZQoaAZHQHGJBqsU7CBoB00EAWgIR0CXSjGRV6u5dX2UKGgGR0BxfWKQ7tAtaAdNaANoCEdAl0qL5qM3qHV9lChoBkdAck0u/Dcdo2gHS/hoCEdAl0qyMHbAUXV9lChoBkdAcG/0L+glGGgHTQABaAhHQJdK4Tzundh1fZQoaAZHQHDBT/MnqmloB0veaAhHQJdLZmthd+p1fZQoaAZHQHAxtoJzDGdoB00DAWgIR0CXS6Emplz2dX2UKGgGR0BxAkkiUxEfaAdL42gIR0CXTCrtmcvvdX2UKGgGR0ByMaSlnAZbaAdL9WgIR0CXTXmuDBdldX2UKGgGR0ByXmqtHQQdaAdNHwFoCEdAl02SCJ40M3V9lChoBkdAba9JLdvbXmgHS+VoCEdAl05TAN5MUXV9lChoBkdAcKHlqJuVHGgHTQIBaAhHQJdPIyJsO5J1fZQoaAZHQG6Evn0TURZoB0vkaAhHQJdPoLZzxPR1fZQoaAZHQHETpNXYDkloB00YAWgIR0CXUN3XI2fkdX2UKGgGR0Bv72GGmDUWaAdL/mgIR0CXUWmW+oLodX2UKGgGR0BuPLPUrkKeaAdL9WgIR0CXUloX9BKMdX2UKGgGR0By7WMCLdeqaAdL9WgIR0CXUyMjNY8udX2UKGgGR0BwUavRqoIfaAdL9GgIR0CXU5OPeYUndX2UKGgGR0Bzxnurp7kXaAdL82gIR0CXU7Dl5nlGdX2UKGgGR0BwoywpvxYraAdL4WgIR0CXVBiDujREdX2UKGgGR0BwIkOby6MBaAdNCAFoCEdAl1Rt2s7uD3V9lChoBkdAcxFiCaqjrWgHS/doCEdAl1R+SSvC/HV9lChoBkdAcRJcQAdXDGgHS/loCEdAl1US5VfeDXV9lChoBkdAcwF0HyEtd2gHS+doCEdAl1V+uNgjQnV9lChoBkdAcavcd5prUWgHS/VoCEdAl1XqtxMnJHV9lChoBkdAcZtZmI0qIGgHTQEBaAhHQJdWyGEf1Yh1fZQoaAZHQG75c9Oh0yRoB0v1aAhHQJdXd0hePaN1fZQoaAZHQHFb0I9kjHJoB00VAWgIR0CXV/9ugpSadX2UKGgGR0Bxzh2St/4JaAdL8WgIR0CXWEYKYzBRdX2UKGgGR0BvMiDXe3x4aAdL+mgIR0CXWOeTV2A5dX2UKGgGR0BzEoLpiZv2aAdL6GgIR0CXWZeruIAPdX2UKGgGR0Bx4qFCb+cZaAdNAwFoCEdAl1nZZwGW2XV9lChoBkdAcYXor4Fia2gHS/ZoCEdAl1p+XiR4hXV9lChoBkdAcFqzbvgFYGgHS9doCEdAl1p78vVVgnV9lChoBkdAb2HBsyi22GgHS+NoCEdAl1q+hkAggXV9lChoBkdAcStsEq2BrmgHTREBaAhHQJdbGxQizLR1fZQoaAZHQGww6+FlCkZoB0viaAhHQJdb0Syt3fR1fZQoaAZHQHKCiHARChNoB00hAWgIR0CXXARh+fAcdX2UKGgGR0Bw3Q4PwuuiaAdL/GgIR0CXXBBbfP5YdX2UKGgGR0ByIIuM+/xlaAdL8WgIR0CXXJoZydWidX2UKGgGR0BvHHgzguRLaAdNAAFoCEdAl13bZSNwSHV9lChoBkdAcIigflp48mgHS+RoCEdAl15GHpKSPnV9lChoBkdAcQpe7tiQT2gHTQYBaAhHQJdeuQmu1Wt1fZQoaAZHQHHfFsYVIqdoB0vuaAhHQJde0wevIOp1fZQoaAZHQHI/ydnTRY1oB0v4aAhHQJdfujj7yhB1fZQoaAZHQHJTJKvmozhoB0vcaAhHQJdf0LofSx91fZQoaAZHQGYYrMC9ytFoB03oA2gIR0CXYBfI0ZWJdX2UKGgGR0BwoZVdX1aoaAdL4mgIR0CXYI0HQhOhdX2UKGgGR0Bw1XNliBoVaAdNCwFoCEdAl2DZN9H+ZXV9lChoBkdAcUsdHDrJKmgHS/VoCEdAl2EFRxcVxnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a14d6e0ce66c1c1805acef66ca8d83fa7a34d24656edd54b67eae6e899714d5
|
3 |
+
size 148012
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dd8fed8ff40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd8fed94040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd8fed940d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd8fed94160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7dd8fed941f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7dd8fed94280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd8fed94310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd8fed943a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7dd8fed94430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd8fed944c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd8fed94550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd8fed945e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dd8fef29480>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1507328,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1711300421607133239,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOBDj59zIc+hSsYvg9AmL6N0y86/uStPAAAAAAAAAAApp1FPgHaUT+mNS4+oTLhvkoAKj4EMK28AAAAAAAAAACA4xi9tAWevOrkz7u6+aA8uZ8QPtC6fb0AAIA/AACAP03hZD3DaSg/NirxPAFXtL5ZeUY903U8vQAAAAAAAAAAGoqKvfOQlD9qfcS9AFPOvsXNH766YQM8AAAAAAAAAAAAICi7rlGYusYcZbPWOfQuLWXdumTYwTMAAIA/AACAP03aID2kMAu75auDvIbEnDxtPQC8O+6GPQAAgD8AAIA/msFePOE0mLpus2WzRIwKLjHEqjqcLqIzAACAPwAAgD9zJpm9/glpPxenS7uzo9m+1fF9vfpYET0AAAAAAAAAAGCVdz4PGl8/QLD/PcIb4r5+oyE+quWpvQAAAAAAAAAAsyzoPfgvmj6b4qe9BH2WvgyIUD3NVEI9AAAAAAAAAAANfJY9HCoTvPY2970+JTA8a56avN20HL4AAIA/AACAPzMfqzuZBAQ/VsljPZoUpb4y/x87HjpvPAAAAAAAAAAAAMygO1yfSLo+i6q3fJ15svgOE7vei8g2AACAPwAAgD/mqgG+Gq2kP75anr7Xg7C+/uOZvp7bL70AAAAAAAAAALqvDT6Om5E+PePIvbOYm75N6OA946bmvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG60Gsmv4dqMAWyUTQEBjAF0lEdAlx+pSR8tw3V9lChoBkdAcu9YUnG83GgHTRQBaAhHQJchB3MY/FB1fZQoaAZHQHKF6HsTnJVoB018AWgIR0CXIUZeAuqWdX2UKGgGR0BxV4QL/jsEaAdNFQFoCEdAlyH9bkfcOHV9lChoBkdAcxlwyqMm4WgHS/FoCEdAlyI2iQDFInV9lChoBkdAcCzgAZKnN2gHS+JoCEdAlyPJzcRDkXV9lChoBkdAcOMvWYnfEWgHS+poCEdAlyPWVVxS53V9lChoBkdAcNCFOwgTy2gHS+BoCEdAlyPdRiw0O3V9lChoBkdAcBFRXOnl4mgHS/VoCEdAlyPsw1zhgnV9lChoBkdAcrMbdadMCmgHS+xoCEdAlyR6brkbP3V9lChoBkdAbZPMGorFwWgHS99oCEdAlyT2uTzNEHV9lChoBkdAcVV+u/1xsGgHTREBaAhHQJclSdWhh6V1fZQoaAZHQHD3+0b961NoB00JAWgIR0CXJcu01IiDdX2UKGgGR0ByC6+evpyIaAdNBwFoCEdAlyY+1a4c3nV9lChoBkdAbiV9/BnBcmgHTQgBaAhHQJcmXwBo24x1fZQoaAZHQHAkH/giu+1oB00JAWgIR0CXJ4ymALApdX2UKGgGR0BwHMSrYGt7aAdL3GgIR0CXJ4wIMSbpdX2UKGgGR0Bx7Lg88s+WaAdNOgFoCEdAlyjjwYtQK3V9lChoBkdAcjfKb8WKuWgHS/1oCEdAlyk3wb2lEnV9lChoBkdAcTOXbdrO7mgHS95oCEdAlymO40/GEXV9lChoBkdAcadAgPmPo2gHS95oCEdAlyqEqH4463V9lChoBkdAcQrbcXWOImgHTQwBaAhHQJcrFSXMQmN1fZQoaAZHQHJ1UvPC2txoB0vTaAhHQJcr1X4j8k51fZQoaAZHQHGrxc7hegNoB00jAWgIR0CXK98Nx2jgdX2UKGgGR0BwZ/7aZhKEaAdNJQFoCEdAlywGK2rn1XV9lChoBkdAbyEntOVPe2gHS/RoCEdAlyw25QP7N3V9lChoBkdAcstOrQw9JWgHTRABaAhHQJcsolTm4iJ1fZQoaAZHQHFCoiX6ZYxoB0viaAhHQJcs+03Ov+x1fZQoaAZHQHCPy1eBxxVoB00YAWgIR0CXLlIrvsqsdX2UKGgGR0BySTxsl9jPaAdL8mgIR0CXLsUBGQS0dX2UKGgGR0BxbG8oQWepaAdL9WgIR0CXLtyIYWLxdX2UKGgGR0BxsHfYSQHSaAdL52gIR0CXL8eUY8+zdX2UKGgGR0ByeFEc81XOaAdN6AFoCEdAlzAFvAGjbnV9lChoBkdAbm1WtEG7jGgHS/BoCEdAlzBPttygf3V9lChoBkdAb1mHX2/SIGgHS/JoCEdAlzCnRTjvNXV9lChoBkdAciKNke6qbWgHS/loCEdAlzGqw+t8u3V9lChoBkdAbp/62OQyRGgHS+VoCEdAlzI6NEPUa3V9lChoBkdAdCyugpSaVmgHTQABaAhHQJcyVScbzbx1fZQoaAZHQHFcbHdXT3JoB00EAWgIR0CXQ/o2XLNfdX2UKGgGR0BxLOCTUy57aAdL62gIR0CXRAMZxaPkdX2UKGgGR0BxLRGe+VTraAdNEAFoCEdAl0SX2M85j3V9lChoBkdAchC/iYLLIWgHTQ0BaAhHQJdFO7QLNOd1fZQoaAZHQHJlgfU4JeFoB001AWgIR0CXRW7x/d6+dX2UKGgGR0BykLTVlPJraAdL4mgIR0CXRdZVGTcJdX2UKGgGR0ByygUUO/cnaAdNBAFoCEdAl0ZBqCYkV3V9lChoBkdAcMO4R28qWmgHTRYBaAhHQJdHEJfICEJ1fZQoaAZHQHBsj7IkqtpoB0vXaAhHQJdHPOyE+Pl1fZQoaAZHQHIC9waR6nloB00BAWgIR0CXR6w482aVdX2UKGgGR0BxBlxEORT1aAdNCgFoCEdAl0gxoIv8InV9lChoBkdAcZRFmnO0LWgHTTEBaAhHQJdIs41gpjN1fZQoaAZHQHG5wFLWZqpoB0v1aAhHQJdJppxm03R1fZQoaAZHQHGJBqsU7CBoB00EAWgIR0CXSjGRV6u5dX2UKGgGR0BxfWKQ7tAtaAdNaANoCEdAl0qL5qM3qHV9lChoBkdAck0u/Dcdo2gHS/hoCEdAl0qyMHbAUXV9lChoBkdAcG/0L+glGGgHTQABaAhHQJdK4Tzundh1fZQoaAZHQHDBT/MnqmloB0veaAhHQJdLZmthd+p1fZQoaAZHQHAxtoJzDGdoB00DAWgIR0CXS6Emplz2dX2UKGgGR0BxAkkiUxEfaAdL42gIR0CXTCrtmcvvdX2UKGgGR0ByMaSlnAZbaAdL9WgIR0CXTXmuDBdldX2UKGgGR0ByXmqtHQQdaAdNHwFoCEdAl02SCJ40M3V9lChoBkdAba9JLdvbXmgHS+VoCEdAl05TAN5MUXV9lChoBkdAcKHlqJuVHGgHTQIBaAhHQJdPIyJsO5J1fZQoaAZHQG6Evn0TURZoB0vkaAhHQJdPoLZzxPR1fZQoaAZHQHETpNXYDkloB00YAWgIR0CXUN3XI2fkdX2UKGgGR0Bv72GGmDUWaAdL/mgIR0CXUWmW+oLodX2UKGgGR0BuPLPUrkKeaAdL9WgIR0CXUloX9BKMdX2UKGgGR0By7WMCLdeqaAdL9WgIR0CXUyMjNY8udX2UKGgGR0BwUavRqoIfaAdL9GgIR0CXU5OPeYUndX2UKGgGR0Bzxnurp7kXaAdL82gIR0CXU7Dl5nlGdX2UKGgGR0BwoywpvxYraAdL4WgIR0CXVBiDujREdX2UKGgGR0BwIkOby6MBaAdNCAFoCEdAl1Rt2s7uD3V9lChoBkdAcxFiCaqjrWgHS/doCEdAl1R+SSvC/HV9lChoBkdAcRJcQAdXDGgHS/loCEdAl1US5VfeDXV9lChoBkdAcwF0HyEtd2gHS+doCEdAl1V+uNgjQnV9lChoBkdAcavcd5prUWgHS/VoCEdAl1XqtxMnJHV9lChoBkdAcZtZmI0qIGgHTQEBaAhHQJdWyGEf1Yh1fZQoaAZHQG75c9Oh0yRoB0v1aAhHQJdXd0hePaN1fZQoaAZHQHFb0I9kjHJoB00VAWgIR0CXV/9ugpSadX2UKGgGR0Bxzh2St/4JaAdL8WgIR0CXWEYKYzBRdX2UKGgGR0BvMiDXe3x4aAdL+mgIR0CXWOeTV2A5dX2UKGgGR0BzEoLpiZv2aAdL6GgIR0CXWZeruIAPdX2UKGgGR0Bx4qFCb+cZaAdNAwFoCEdAl1nZZwGW2XV9lChoBkdAcYXor4Fia2gHS/ZoCEdAl1p+XiR4hXV9lChoBkdAcFqzbvgFYGgHS9doCEdAl1p78vVVgnV9lChoBkdAb2HBsyi22GgHS+NoCEdAl1q+hkAggXV9lChoBkdAcStsEq2BrmgHTREBaAhHQJdbGxQizLR1fZQoaAZHQGww6+FlCkZoB0viaAhHQJdb0Syt3fR1fZQoaAZHQHKCiHARChNoB00hAWgIR0CXXARh+fAcdX2UKGgGR0Bw3Q4PwuuiaAdL/GgIR0CXXBBbfP5YdX2UKGgGR0ByIIuM+/xlaAdL8WgIR0CXXJoZydWidX2UKGgGR0BvHHgzguRLaAdNAAFoCEdAl13bZSNwSHV9lChoBkdAcIigflp48mgHS+RoCEdAl15GHpKSPnV9lChoBkdAcQpe7tiQT2gHTQYBaAhHQJdeuQmu1Wt1fZQoaAZHQHHfFsYVIqdoB0vuaAhHQJde0wevIOp1fZQoaAZHQHI/ydnTRY1oB0v4aAhHQJdfujj7yhB1fZQoaAZHQHJTJKvmozhoB0vcaAhHQJdf0LofSx91fZQoaAZHQGYYrMC9ytFoB03oA2gIR0CXYBfI0ZWJdX2UKGgGR0BwoZVdX1aoaAdL4mgIR0CXYI0HQhOhdX2UKGgGR0Bw1XNliBoVaAdNCwFoCEdAl2DZN9H+ZXV9lChoBkdAcUsdHDrJKmgHS/VoCEdAl2EFRxcVxnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 368,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb1427a381dcfc61af4a61636cab6e080c262d4f4b962e5c3acba5f7a81e0805
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd42bfcc88f6272683b8b6374a157d15bcd4a49ee8320724bcc77691f1baa9ce
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (188 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 278.90830656471155, "std_reward": 14.575234416372405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-24T18:07:46.598330"}
|